Energetic Electrons Accelerated in Solar Particle Events

New measurements of energetic solar electrons from the WIND spacecraft are 
reviewed, and the implications for particle acceleration mechanisms discussed.
The electron energy spectrum in solar impulsive events is often found to extend
below ~1 keV, indicating that acceleration occurs high in the corona. Two types
of impulsive events are found, those where the electrons are released from the 
Sun at the onset of the solar type III radio burst, and those where they are 
released up to ~0.5 hour later. The latter events are proton-rich, and coronal 
transient waves are usually detected traveling across the Sun by the SOHO EIT 
instrument. Timing analyses show that in some events the first arriving ions 
(assumed protons) are released ~0.5-2 hours after the electrons and travel a 
path length of ~1.2 AU (essentially scatter-free), while in other events the 
ions are released at the same time as the electrons but travel ~2 AU. Solar 
hard X-ray and gamma-ray observations (which provide information on energetic 
electrons and ions, respectively, at the Sun) are compared with the energetic 
particle measurements made in the interplanetary medium. In mid-2000 the High 
Energy Solar Spectroscopic Imager (HESSI) mission will be launched to provide 
detailed X-ray and gamma-ray imaging and spectroscopy observations to study 
particle acceleration and energy release processes at the Sun. Comparisons 
between HESSI and ACE/WIND will provide new insights into the origins of 
energetic solar particles.