Heliospheric Physics: Linking solar variations to the space environment at Earth

Richard Mewaldt and Thomas Zurbuchen
Coronal Mass Ejections

Solar Energetic Particles

CME Plasma

Two fundamentally different interactions
Interactions provide coupling between chains.
CME signatures:

- Counter-streaming particles, electrons, ions
- Magnetic field rotations, low plasma-\(\beta\), small \(|\delta B|/B\)
- Dynamic signatures, shocks, expansion
- He/H enhancements, unusual charge states
New plasma composition tools from ACE

- Compositional information on solar wind plasma - probe solar origin solar wind of individual ejecta

- Most useful:
 - $\langle Q \rangle$ Fe very capable “sufficient CME identifier”. Measures coronal temperatures to 3 MK.
 - O7+/O6+ distinguishes plasma from solar sources of different temperatures, CME identifier
Fe and O charge states

- O7+/O6+ freezes in close to the Sun. In many cases, even before the temperature max.
- \(<Q> Fe freezes in later. Clear signal for “unusually heated plasma”.

Three Observed Halo CMEs on SOHO

<table>
<thead>
<tr>
<th>CME of interest</th>
<th>Speed</th>
<th>Loc.</th>
<th>Flare</th>
<th>Flare UT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002/04/15 04:06:06</td>
<td>714</td>
<td>S15W01</td>
<td>SF/M1.2</td>
<td>03:07</td>
</tr>
<tr>
<td>2002/04/17 08:26:05</td>
<td>1263</td>
<td>S14W34</td>
<td>2N/M2.6</td>
<td>07:46</td>
</tr>
<tr>
<td>2002/04/21 01:27:20</td>
<td>2495</td>
<td>S14W84</td>
<td>1F/X1.5</td>
<td>00:43</td>
</tr>
</tbody>
</table>

Difference Images

- **04/15 05:18 UT**
- **04/17 10:38 UT**
- **04/21 02:18 UT**
Plasma Data

- 3 CMEs, each driving a shock
 - CME1: large B, low T
 - CME2: consisting of several ejecta, large B, low T in part of ejecta
 - CME3: no simple signatures
V from SWEPAM And SWICS

\[B_z [\text{gam}] \text{, southward} \]

\[\text{IMF is marked in red} \]

\[n \text{ [/cc]} \]

\[T [\text{K}] \]

\[|B| [\text{gam}] \]
Shocks:

Preliminary list from ACE plasma team:

- four forward shocks
- one potential reverse shock
Composition signatures

Compositional CME id (prelim)

Slow SW
Fast SW

Bi-directional Electrons (prelim)

Velocity

O7+/O6+

<Q> Fe

time [day of April 02]
Magnetospheric Drivers

- He/H exceeds 25% twice – He makes a significant contribution to ram pressure
- Pressure for protons, and including He.
- Bz negative is shown in red. Note: Bz negative and pressure peaks coincide.
Bz negative leads to Reconnection at Magnetopause
Magnetic Cloud (CME)

Top View

Side View

Cross-section

Ecliptic Plane

North

South

Solar Wind

Sun

Earth
CME1: Magnetic cloud

- Classic magnetic cloud signatures are evident
- There is compressed interplanetary field in front of the cloud
- CME – solar wind interactions are crucial.
• Possible magnetic clouds
Solar Particle Measurements

- Time History - Correlation with CMEs and shocks
- Acceleration near the Sun and in interplanetary Space
- Compositional Signatures
- Energy spectra and implications
Two Classes of Solar Particle Events

CME-Associated (Gradual Event)

Interplanetary Magnetic Field (IMF)

Sun

Shock

CME

Particle Flux

Earth

Proton-Rich
Long-Lived (Days)
60-180 Degrees Solar Longitude

Impulsive Flare-Associated (Impulsive Event)

Interplanetary Magnetic Field (IMF)

Sun

Particle Flux

Earth

Electron-Rich
Short-Lived (Hours)
30-45 Degrees Solar Longitude

Fe/O ~ 0.1

$^{3}\text{He}/^{4}\text{He} < 0.01$

Q(Fe) ~ 14

Fe/O ~ 1

$^{3}\text{He}/^{4}\text{He} \sim 0.1 - 1$

Q(Fe) ~ 20
Evidence for Multiple Episodes of Acceleration
Arrival Time Implies Particles Accelerated Very Close to the Sun

Onset at L1: 0140 UT
Travel time: >25 min (80 MeV)
Particles left Sun before 0123 UT, as seen from Earth
Flare occurred at 0043
CME first observed at 0127
⇒ Particles accelerated very close to the Sun
All Elements Share a Common Spectral Shape
Evidence for Two Components Accelerated at Different Times and Locations

All species show evidence of Two spectral components

The time history indicates the high-energy component was accelerated near the Sun, and the low-energy component in interplanetary space
Composition of SEPs

- The similarity of the composition of the 4/21 event with coronal abundances indicates a "gradual" SEP event rather than an "impulsive" event.
How does the size of the April 21 SEP event compare to others?
Summary

- Plasma signatures identify all 3 CMEs and reveal significant effects of their interactions
- Enriched He accounts for up to 50% of solar-wind pressure in the most geo-effective intervals
- Evidence for several separate shocks is found
- Several instances of local shock acceleration
- The last two CMEs produce “gradual” SEP events - one in the “top ten” of solar cycle 23
- SEP spectra show a knee at ~20 MeV/nuc, thereby reducing SEP effects on the deep atmosphere
We acknowledge the entire ACE team.
The following members of the ACE team provided data analysis for this presentation: Glenn Mason, Ruth Skoug, and Chuck Smith.
Mark Looper contributed PET data from SAMPEX.