SPACE RAD. LAB. INTERNAL REPORT #1

NOTES FROM READING

HANDBOOK ON RFI VOL 3 FREDRIK RES. CORP 1962

MARTIN ISRAEL

GENERAL:

- SOLID COVER MUCH BETTER THAN MESH
- FOR HIGH FREQ SHIELD MUST BE ALMOST WATERPROOF
- USE MULTIPLE SHIELDING + FILTERS FOR ALL LEADS
- BELOW 1 MG COPPER MUST BE VERRY THICK FOR MAGNETIC SHIELDING; BETTER TO USE HIGH Mg MATERIAL
- ELECTROSTATIC SHIELDING IMPORTANT FOR HIGH VOLTAGES

REFLECTION & ABSORPTION LOSSES IN SHIELDS

1) PLANE WAVE ON INFINITE PLANE SHIELD NORMAL INCIDENCE (WORST CASE)

\(P_{3-11} \) TOTAL LOSS (dB) = \(3.34 \sqrt{\frac{\mu_n \sigma_n}{\mu_0 \sigma_0}} \) + 10 \log \frac{\sigma_n \mu_n}{\sigma_0 \mu_0}

WHERE
- \(f_m = \) FREQ IN Mhz
- \(\mu_n = \) REL. PERM. (\(\mu_n = 1 \) FOR NON-MAGNETIC)
- \(\sigma_n = \) REL. CONDUCTIVITY (\(\sigma_n = 1 \) FOR COPPER)
- \(S = \) SHIELD THICKNESS IN MILS

AT FREQUENCIES \(\geq 1 \) MG, MAGNETIC MATERIAL IS BETTER THAN COPPER

(But even 5 mils of Cu give 125 dB)

FOR 5 MIL Cu ABSORPTION DOMINATES FOR \(f > 40 \) MG

FOR 5 MIL \(\sigma = 0.1 \) MG = 1000 \(\cdots \cdot \cdot \cdot \)

\(f > 0.2 \) MG

2) CYLINDRICAL SHIELDS ABOUT LINE OR LOUD SOURCE

FOR ONE POLARIZATION, REFLECTION PRODUCES LITTLE LOSS

- CONSIDER ONLY ABSORPTION LOSSES

PLANE WAVE EQN GIVES GOOD APPROX.

(NOTE, AT ALL FREQ ABSORPTION LOSS FOR TYPICAL MAG SHIELD IS BETTER THAN Cu, *

BUT FOR 5 MIL Cu, ABSORPTION IS FAIRLY LARGE REASON:

5 MIL Cu:

<table>
<thead>
<tr>
<th>(f (\text{MHz}))</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs. Loss (dB)</td>
<td>10</td>
<td>50</td>
<td>160</td>
<td>380</td>
<td>**</td>
</tr>
</tbody>
</table>

* BUT FOR TYPICAL MATERIAL

\(\sigma_n (\text{STEEL}) = 0.03 - 0.16 \)

\(\sigma_n (\text{Al}) = 0.61 \)

\(\sigma_n (\text{Cu}) \geq 1.0 \)

\(\mu_n (\text{STEEL}) = 1000 \)

\(\mu_n (\text{Cu}) = 1 \)

** FOR ABSORP. ADVANTAGE/WEIGHT (\(\mu_n \sigma_n \) STG) \(\frac{\text{absorption}}{\text{weight}} \)

DENSITY OF STEEL \(7.8 \)

DENSITY OF Cu \(8.9 \)

STEEL BETTER FOR FM \(< 200 \) MG

**
SHIELDING MATERIALS

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Material} & \text{Al} & \text{Brass} & \text{Cu} & \text{Ag} & \text{Steel} & \text{Sn} \\
\text{Thickness (in)} & 13 & 20 & 10 & 10 & 25-55 & 26 \\
\hline
\end{array}
\]

*Assuming \(\mu = 1 \)

Principal shielding of mesh is due to reflection (absorption much lower than for solid shield)

Total loss of solid wall increases with freq.

But if... mesh decreases...

(For mesh, reflection = solid reflection)

50% open = 60 strands/wavelength, permanent electr. contact at intersections

(3-24)

Holes

For dimensions of hole small compared to wavelength, leakage small, proportional to hole area. Many small holes better than one large hole

\[\text{Note: } 10 \text{ KMc} \leftrightarrow 3 \text{ cm, wavelength } \leftrightarrow 7.03 \text{ msec rise time} \]

**Protruding sleeves around holes act like waveguide provided length \(\geq 3 \times \text{diam} \) \(\text{or } 3 \times \text{longest xsectional dimension} \)

\[
 f_c = \frac{5900}{L} \quad f_c = \frac{6920}{d}
\]

Cutoff for Rectang.

\[f_c \text{ in Mc, } \quad L \text{ = longest dimension in inches, } \quad d \text{ = diam. in inches} \]

Note:

- 1" diam \(\Rightarrow f_c = 6.9 \text{ KMc} \)
- 0.2" diam \(\Rightarrow f_c = 3.5 \text{ KMc} \)

For \(f < 0.1 f_c \) attenuation (db/in) = \(\frac{27.3}{f} \) or \(\frac{32}{f} \)

\[\text{So } 1\" \text{ diam } \times 3\" \text{ long } \Rightarrow \]

Note: If a conductor runs inside the "waveguide" then a TEM mode of propagation is possible. This mode has no lower freq cutoff. (i.e. you can transmit dc down a coax)
Joints: Knitted mesh is good [e.g., Meter, Technit] (Also lists other possibilities & considerations)

Solder has conductivity \(\approx 0.12 \) of copper

[Compare: Al \(\approx 0.61 \)] so even a good solder joint is not as good as a weld.

\[(P.3-44)\] Conduit: Rigid conduit \(\frac{0.22}{\text{in}} \) Al = 57 dB absorption at 1 Mc

570 \(\ldots \) \(\ldots \) 100 Mc

Flexible conduit not as good

Tightly woven braid over flexible conduit gives

\(\approx 45 \) dB additional attenuation (at most freq)

\[(P.6-8)\] Misc: Ground cable shields, coaxial feed throughs, \& filters

At shields at point of exit or point of entry

At high freq a GND lead which has length which is an odd multiple of \(\frac{1}{4} \) wavelength may have very high impedance to GND.

And high impedance in GND lead may be caused by sudden changes in configuration, as when leaving a metal duct or otherwise changing the electrical relationship to metallic bodies. Such changes produce serious reactive mismatches.