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• This report is intended to illustrate the use of Bayesian statistics and to point out a 
discrepancy with the results obtained by M. Israel (SRL internal report #4, 1968), and elaborated on by 
N. Gehrels (Ap. J., 303, 336, 1986), for confidence limits in the Poisson statistics of small numbers. I 
have discussed the discrepancy with Neil Gehrels and we concluded . that it is the result of using 
different theoretical definitions of the confidence limits. The approach taken by Israel and Gehrels was 
to define the 1 sigma confidence limits such that, if the experiment was repeated many times, at least 
68% of the results would be within these limits. Then most situations lead to more than 68% of the 
results being within these limits. Their·approach is therefore useful if one wants to place conservative 
error bars on a data point. If instead one is using the data point in, for example, a least squares fit to 
an energy spectrum, then the conservative error bars are inappropriate because they can misle_ad one 
into thinking that the model is "within the error bars" when it actually may not be. That is, the value 
of x2 would be too small. The Bayesian approach is more useful in this situation, as it should give a 
more accurate value of x2. 

Note that the controversy arises only because we are applying concepts appropriate to 
Gaussian probability distributions. For example, we often do a least-squares fit by minimizing the 
Gaussian x2 function 
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where ii; is the model prediction of the i th data point n; with standard error cr;. In fact, it may not be 
much more difficult to minimize the Poisson likelihood x2 function, derived directly from the Poisson 
distributioi:i (Baker and Cousins, Nucl. Instrum. Methods Phys. Res., 221, 437, 1984), 

2 [- [n;ll XP = 27 n;-n;+n;ln fl; (2) 

This makes the proper statistical weighting and therefore does not contain cri. However, the Gaussian 
least-squares approach is often the the most convenient, so it is useful to derive the error bars for that 
case, and they are given in equation 15 below. 

I will first derive the confidence limits associated with estim.ating the expected number of 
counts from a Poisson distribution when n counts are observed. The Poisson distribution function is 

-p d 
f (p ,d) = e dT (3) 

where the data, d, is the observed number of counts, and the parameter, p , is the mean of the 
distribution. The Bayesian formula for the probability density function of the parameter as a result of 
the measurement is (for a general discussion see Tarantola, Inverse Problem Theory, Elsevier, 1987) 

cr(p) = f p(d)0(d Ip )dd (4) 

I assume that the experiment counts the number n without any error, so that the a priori density 
function for the data is 

p(d) = _fJ(d-n) (5) 

The conditional density function for measuring d given p is just 
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0(d Ip}=/ (p ,d) (6) 

Then evaluating the integral in (2) 

cr(p ) = f (p ,n ) (7) 

This result may be obvious, but the method becomes very useful in more complicated situations. In 
any case, we can now derive any properties of the density function for p . For example, the maximum 
likelihood point (the mode of the distribution) 

PML = n (8) 

the mean 

p = n+l (9) 

and the standard deviation 

<Sp = (n+1)1'2 (10) 

Note that the mean, n+l, is generally a better estimate of p than the maximum likelihood point, n, 
because of the asymmetry of the distribution function. . . 

The 1 sigma upper (lower) confidence limit is defined, by analogy with the Gaussian 
distribution, as the value of p such that the probability of a smaller (larger) value is 84.13%. In 
general, an upper confidence limit of CLu is given by p = Pu if 

1-CLu = f cr(p )dp 
p,, 

and a lower confidence limit of CL1 is given by p = p1 if 

CL1 = f cr(p )dp 
Pt 

Substituting cr = f from (7) and (3) and looking up the integrals in a table it is easy to show that 
n 

CLu = 1-"fJ(p,!,i) 
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Only the equation for CL1 differs from Israel's, where the summation extends only to n-1. By setting 
CL" = CL1 = 0.5, Pu = p1, and adding together (13) and (14), it is easy to see that the upper and lower 
50% confidence limits are equal. Israel's results do not havy this property. The derivation of 
approximate formulae for small n follows Israel's and the results are 

p = p ± (n + 3/4)1'2 (15) 

where p = n + 1 is given by (9). I would recommend this as the best estimator for p and its 1 sigma 
confidence region. It is reasonably accurate even down to n = 0, although the exact equations (13) 
and (14) can be solved analytically in that case to give p = 1, Pu = -ln(l-CL11 ) = 1.841 and 
Pl = -ln(CL,) = 0.173 for CL11 = CL1 = 0.8413 (it may be preferable to use only the upper limit for 
n = 0). 

As a second and slightly more complicated example I consider the case of the n counts being 
observed from a combination of a source and a background. Both obey Poisson statistics but the 
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source again ·has an unknown mean p that we wish to determine, while the background distribution has 
a known mean, b. The only difference from the above derivation is ·that (6) must be replaced by 

0(d Ip)= L f (p ,i)f (b ,j) 
i+j=d 

where the summation extends over all combinations of source and background counts, i 
add up to the data, d. Plugging into ( 4) leads to 

II 11-j bj 
cr(p) = e-(p+b)L P .. =f(p+b,n) 

i~ (n-1)!1 ! 

(16) 

and j, that 

(17) 

where the last step follows from the binomial expansion. Again, the result seems obvious. Oearly, in 
the large n limit the estimate of p is p = n-b ± n in.. The derivation of a small n approximation 
becomes much more complicated than before. However, if you allow the possibility of negative p 
then the previous derivation holds and equation 15 can be used with ff= n-b+l. 




