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It has been suggested that the shape of the distant geomagnetic tail may
be of critical importance in understanding the mechanism of particle access
onto open geomagnetic field lines (Michel and Dessler, 1970). Specifically,
the anisotropic pressure exerted on the geomagnetic tail by the interplanetary
magnetic field, which has been distorted by the presence of the tail, cam be
expected to tend to "flatten" the tail (i.e., the cross section of the tail
should show a pronounced ellipticity some distance from the Earth). The
magnitude of this ellipticity assumed by Michel and Dessler (2000 Rp major
axis and 10 R minor axis at ~10% Rp behind the Earth) led them to postulate
that the tail becomes filamentary at large distances. This, in turn, led to
the postulation of a different mechanism of access onto open geomagnetic field
lines for high energy protons than for low energy protons. Furthermore, the
definition of the distinction between "high" and 'low" energies is apparently
critically dependent upon the magnitude of the ellipticity. Also, since the
method by which particles gain rapid access to the open field lines is
dependent upon the filamentary nature of the geomagnetic tail, the position
of the beginning of this filamentary region defines the position of the
beginning of the region of rapid access. A more careful investigation of
the shape of the distant geomagnetic tail would seem to be of critical
importance to the access model proposed by Michel and Dessler. The purpose
of this study is such an investigation, in view of the current infeasibility
of a direct magnetometer mapping of the configuration of the distant tail

field.



The present study was predicated on the following assumptions:

1. The parameters and configurations of the solar wind, interplanetary
magnetic field, and geomagnetic tail are uniform (time;independent).

2. The cross-sectional shape of the geomagnetic tail is always strictly
elliptical.

3 The longitudinal axis of the tail (-xSM) is parallel to the
average solar wind velocity.

4. The boundaries of the geomagnetic tail are everywhere defined by
the position of the magnetopause.

5., The position of the magnetopause represents an equilibrium as
defined by the balancing of the several forces acting on the magnetopause
(see below for a discussion of these pressures).

6. The surface defined by the magnetopause is continuous.

7. Instabilities and waves in the magnetopause do not, to a first
approximation,affect the overall shape of the tail.

8. No significant merging takes place between the interplanetary

magnetic field and the geomagnetic field.

Assumptions 1, 2 and 7 are the most critical and the most questionable, but

all reduce the computational complexity of the problem considerably. The
second is a necessary consequence of a conformal transformation used, and
cannot be relaxed in the context of this study; tests have, however, shown

it to be reasonable to a first approximation. The first assumption can be
relaxed merely by assuming that the interplanetary or geomagnetic parameters
vary as a function of position in a non-uniform manner. Although this would

be simple enough to do in the context of this study, it has not been done

and probably represents an unwarranted degree of complexity. The seventh
assumption could be relaxed if more were known about the modes of instabilities

and waves in the magnetopause and if the effects of these instabilities and



waves could be translated into equivalent '"pressures'. This again probably

represents an unwarranted degree of complexity in the context of this study.

The following pressures (and no others) are assumed to affect the

equilibrium position of the magnetopause:

P1

-

Isotropic pressure of the solar wind plasma. Since the axis

of the geomagnetic tail is assumed to be parallel to the solar
wind velocity, this pressure will be exerted perpendicularly

to the surface of the tail and will be independent of the cross
sectional shape of the tail,

Pressure from the component of the interplanetary magnetic field
parallel to the solar wind velocity. This pressure will also be
independent of the cross sectional shape of the tail,

Pressure from the component of the interplanetary magnetic field
perpendicular to the solar wind velocity. It is this pressure
which tends to '"flatten" the tail. This component is assumed

to be parallel to the ecliptic plane far from the geomagnetic
tail.

Isotropic pressure from the plasma in the geomagnetic tail.
Little is known about the detailed distribution of this plésma,
and it is probably safe to assume an initially isotropic distri-
bution. This pressure will depend on angular positioﬁ'within
the tail only to the extent of any compressional or expansional
effects as the shape changes.

Pressure from the geomagnetic field in the tail, which is
assumed to be pulled into a spiral configuration due to the

rotation of the Earth (Dessler and Juday, 1965).



Pg Pressure exerted on the surface of the tail by the solar wind
corresponding to the pressure exerted by a supersonic fluid on

a surface over which it is flowing.

D>

We must first determine an expression for the unit normal to the tail
surface. through any arbitrary point (X,,¥o,2%0). To do this we must first
obtain expressions for the tangent to each of two curves through the point
(Xo»YosZo) and along the surface (see figure 1). Since assumption 2 (that
all cross sections are elliptical) is necessary in order to transform the
anisotropic pressures, a natural choice for ome of the curves is the inter-
section of the surface and the plane x = x5, which is given by

Cl: ®

X

o
= ROCOSG
= OgR,siné
Qy = a(xo)
Ro = R(xg) (1)

See figure 2. From Eq. (1) the tangent can be easily found to be

” -sin6 &y + acosd &,
T, = ' (2)
(sinze +-a200329)1/2

The other curve will be the intersection of the surface with the half-plane

6 = 6,, which can be expanded in a Taylor series around (x,,Y,,2,):

02: X = X + 6

2 .2

d d

¥ RO 6—2 + £ 23 + .

dx Ixg 2 dx“ %o
2,2

dz d®z

z = 4O+5— + ﬁ-—z + ... (3
dx xo 2 dx xo




which are X = x5+ 8
2
y =y, + 6R'(x)cos + %R"(x)cos@ # e
(4)
z = z5 + §(R'(x)a(x) + @' (x)R(x))sind

2
+ %(R"(x)cx(x) + 20" ()R' (x) + O (%)R(x))sind + ...

from which, ignoring terms of 0(52), the tangent can be found to be

Ty = Toxly + Touéy + Tp,6, (5)

where Toy = 1!85
T2 = R'costSé

Ty, = (R'a +a'R)sin9/S£

z
pd 59| 2
(8))" = |— (6)
1)
= 1+ (R'cos8)? + ((R'04a'R)sind)>
Now, the normal can be expressed as
p=N=T xT, (7)

whose components can be seen to be the following

e, = N_ = -(GR'4a'Rsin®6)/D(a,R, 6)
eny = Ny = qcos@/D(0,R,0)
e,, = N, = sin6/D(o,R,8)

nz z

(D(@,R, 0))2 = sin%0 + a’cos®6 + (aR'4a'Rsin’0)? (8)
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Interplanetary plasma pressure:

pl = “nikaipen (9)

ol

Pressure from the component of the interplanetary magnetic field

parallel to the solar wind velocity. Let 0p be defined, far from the

tail, by
Bip°ex BipcosaB
- (10)
B, ‘& =B, simy
ip y. i B
2
L (Bjpcos0p)
= _ P A (11)
p2 8n n
p3

Pressure from the component of the interplanetary magnetic field
perpendicular to the solar wind velocity. Consider the problem of a
cylindrical conductor of circular cross section in an externally applied
magnetic field E; which, far from the cylinder, is everywhere uniform,
parallel and alligned perpendicular to the cylinder axis (in the diréetion,
for instance of éy). This problem can be conformally transformed into the
same problem with a cylinder of elliptical cross section. The problem of
finding the magnetic scalar potential for the circular cylinder configura-
tion is a standard magnetostatics exercise (see, for instance, Stratton,

p. 261 ff). One such potential is



2

r
@M = =(p + :;) B,cosy

RJ1-02

(12)

where ' is the radius of the cylinder cross section and (p,y) are standard
polar coordinates.

Consider the conformal transformation illustrated in figure 3:

© Ry1-a? 1
v o= @+ 3) (13)
where
w=y+ iz
(14)
V= 7+ ig
We then have
p 2 2 2 2
T 27\ an, 2ring an] Ril-c
B z) =B 1 4+ =(1 - = 4 o
y\ %) = B ( pz( p? )) oy 4 2] 2
(15)
- 2 2 2 -
r 2 )) an _ 2 an| rRél-a
B =B, |{1 + =1 - - Al
z(y;z) o-( pz( ;gL 3z 0 3y | 2
where
M 1 [1 yJi+cosfy + le-coeW]
P = +
oy R 1-0t y2r,
(16)
aﬂ 1 y{I-cosby - z[l+cosO;
a9z = r——ﬂ
Ryl-cx 21:1
i0
where rlel 1 = (v + iz)2 - Rz(l—az) (7))

At the surface of the cylinder, y = Rcosf and z = GRsinf@ and we have



Y’S o ] 1—-2 az
(18)
= -2z} 8N | TC 2 e
Bz,s B, Kl /T ) s 5 BYJ Ryl-c
B s [1 " = ]
oy R J]-.-Ciz Ctzcos 29+s in29
(19)

Bﬂ J cosfsinf

R o c0529+31n29

and, of course, the hydrostatic pressure near the surface of the elliptical

cylinder can be found by evaluating

1,2 2
P3 = gx(By,s + 3B, g) (20)

This is the solution for an elliptical cylinder. The more general case
we are interested in here, in which the cross section changes, can be approx-
imated by linearizing the changing dimensions of the cross section. Figure 4
shows a step-wise approximation to the surface at the intersection of the
surface with the half plane 6 = 6,. The total force on the unit of surface

area from x to x + §x and from 6 to 6 + §6 is

-

F % p,y(x) [Raxé‘r - ((R+6R)2-R2)§x]56‘ (21)

which is, as §x - 0

m ps(x)en & (22)

where g, is a differential area on the surface. So, finally

—

2 ;
= 23
Py 81[(B B ,s) G (23)
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- Pressure from the plasma in the geomagnetic tail. To a first approx-
imation the plasma density can be assumed to be constant everywhere in a
given cross section. Thus

—

Py = ngtkTgten (24)

JI?.I.

Pressure from the geomagnetic field in the tail. For an elongated tail
this field ﬁill have a toroidal component due to the rotation of the Earth
(Dessler and Juday, 1965). Resolving the geomagnetic tail field into a
toroidal component and a longitudinal component is simple in the case of a

circular cross section:

B ™= Bgt008®e

! + Bygsingd, (25)

g

where @ is the pitch angle of the spiral of the geomagnetic tail field:

v 2

P
cos @ = Y] (26)
Vp +u% R

where Vp is the average velocity at which the geomagnetic plasma propagates
down the tail, and wy is the angular velocity of the Earth. It is likely
that VP is nearly the solar wind velocity (Dessler and Juday, 1965).

Consider the problem of a toroidal magnetic field inside an elliptically
cylindrical conducting shell. It can be verified that the following magnetic

scalar potential satisfies Laplace's equation and the appropriate boundary

conditions for the interior:

& = -Boasin“l[J(y2+z2+R2(1—mz)—J(y2+z2-m2(1-u2))2-4y2)/z] (27)
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where R and QR are, of course, the semi-major and semi-minor axes of the

interior. From this potential we find

2
B
B2 = 2 (28)

sin29 +-a2c0329

and, once again using the argument illustrated in figure 4, we have

2 2
. Bgt 2@ 2 sin”Q - ey
P = = {cos €5
3 8n sin26 +-a2c0529

U‘\.cl

Pressure exerted by the solar wind due to its super-Alfvénic velocity.
The problem of supersonic flow past a surface is well known (Cf. Landau and

Lifshitz, 1959), and in this case the pressure can be shown to be

2
- PewVsw A 32+1 A )
% T T aehI2 LT g anpia) =

where 2 2
2 sz_vA
e, (31)

2
VA

S (x(6,x)) (32)
ax

>
]

<
n

Alfvén velocity (33)

s —Dip

Bﬁpsw

Equilibrium Equations

Since, according to assumption 2, we are assuming that all cross-
sections are elliptical, the configuration of the magnetopause at a given

value of x can he uniquely specified by two parameters: «(x) and R(x)
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(see figure 2). It is sufficient, therefore, to pick any two lines on
the surface in order to obtain equilibrium equations for & and R along
these lines. The natural choice for these two lines is the intersection
of the surface with the half-planes @ = 0 and 6 = n/2; this choice
simplifies our equations considerably.

From Eq. (8)
(D(,R,0))% = o?(14r"?)

(D(oz,R,n/z))2 -1 4 £2

R e,~R'e
en(6=0) = ot Ml

R é,-f &y
where
f =a'R +aR' (35)
From Eq. (20)
py(6=0) = 0
. (8, (l4)sinag)®
Py(6=1/2) = - & (6=1/2) (36)
81
From Eq. (29) 2
B
- gt( 2 sin w) A
6=0) = —|cos?p + é.(6=0
P5(6=0) R - n(6=0)
2

Py (0=1/2) = S—i-f e, (6=/2) (37)
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From Eqs. (32) and (30)

N(6=0) = R'
N(O=x/2) = £ (38)
2
fo) Vv 4 2 '
B (1R'?) 28 (14R'2)1/2
2 39)
Parg V. £ Bo+1 f N (
36(6'_"7[/2) = SRRl 2 1/2 [1 - 2 1/2] en(9=ﬁf2)
B (14£9) 28 (1+£%)
Thus, if 5& represents the total pressure,
® . )2 BZ 2
” ipcosap gt 2 sin"¢
(0)=-‘e=0=[- kT, - +n_ kT + —
Prp Pp(6=0) ny kT = ng kT o o cos @+ "
2 ) (A
= pswvsw R' ( _ 32+1 R' )] Sy R By
B (1+R'2)1/2 28 (14r'2)1/2 (1+R'2)1/2
(B %)2 (B inaB)z
cos .S
=+ (1/2) o 2 (o g T, _oip _ip 2
Py pp(8 7/2) nlkaip e = (14ex)
Bz o v £ [ 241 £
g 8x B (1+£4) 2B (1+4£%)
e, -fe
z "X (40)
(1+£2)1/2

Now, the relation between R(x), a(x), and B& can be found as follows:

= 0: d d d

— T — —

dt 3y dt x dt



aR  dyla® ay R 3 ( ) aza dx R 3 (
a dt

2 2 at * w
dt dt\ay? dt ay dy d yox dt  dx ay

|

dx[32R dx aR 3 ([ax %R dy R 3
dt| 3x dt ax ax Xy dt aY

+

3%R dy R d?y %R dx R d%

ayat dt = 3y dt2 = 3xat dt | 3x dt2

Since y = R(x), dx/dt = V_, dy/dt = WR',

2

d"R 9 9 Q

— = VR'(=(VR') + R'" =(V + V,(R"V, +R' =— V, +

de2 (ay( ) By( x)) x( X 3x x
p(0) p(0)

+_L+an_g'+n'l¥_

p_T ot p__T
mp mp mp mp

which reduces to

L o0 + pO) o (®
pmmep(l_Rl2)(1+Rl2)l,2 mp mp(l RtZ)
Similarly
S

Q" = -20'R' - R"0 +

o 1 (1-£2)(14£2)1/2
mp mp

(n/2)
Pr
= -2'R' - R'"'a +

T (1-£%)
Pmp 'mp

S (WR'))
ax
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(42)

(43)

(44)

(45)

(46)

We must now specify relations expressing the variation, as a function

of distance down the tail, of each of the geomagnetic and interplanetary

parameters (D = 1 AU, and the positive x-axis is in the solar direction):
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B ~ 47
(Bipe (D-x)2 (47)

1
(Bip)e Sl (48)

1
P o : (49)
swW (D-x)z
Viu ~ D= % (50)
P o™ -—1—2—3 (51)
swW (D'x) . _
B ~ RyZ/oR? (52)
gt o
2

g R,2/oR (53)
Pgt ~ (1102/13513’.2)5/3 (adiabatic expansion) (54)

Solutions and Discussion

B

Equations (40) and (44) to (54) constitute a well defined set of two
coupled, second order, ordinary differential equations for two dependent
variables R(x) and a(x) and one independent variable x. Due to the complex
nature of these equations, they are not amenable to analytic solution. They
can, however, be handled quite readily by any of several numerical techniques.
In order to integrate these equations numerically, the various parameters in.

the problem were assigned the following values (at Xy ~ -20 RE):

Ny = 7.0 qm’s
5o

Tip = 2.0]{10 K

Y = 400 km/sec
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|cos-l|Bip'Bgt||= 45°

Bgt = 10.0 y

Dy = 0.10 cm™>

Ty, = 1.0x10° K

B_. pitch angle = 3.2};10-3 radians

gt

Tmp = 100 km

100-1::1!1_‘3

Omp

Using a four-point predictor-corrector method (Milne) with Runge-Kutta

starter, the following initial conditions:

RO = 25.0 RE
R'y = 0.0
O = 1.0
a' = 0.0 rgl

and a step size of 0.40 Ry, the differential equations were integrated

from Xoq = =20 RE to Xon = -1520 Ry The results of this integration

are shown in figure 5, where the following quantities are plotted as a

function of distance along the geomagnetic tail axis (-xsM axis) from the
point xgy = -20 Rp* the semi-major and semi-minor axes of the elliptical
cross section, and the eccentricity, e, of the ellipse. The eccentricity

is related to a(x) by

e = l-az

(55)
a2-1
Y
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The variations in the cross sectional dimensions of the tail indicated for
distances < 200 Ry are not real and merely indicate an adjustment of the
solution to a non-consistent set of initial conditions.

In order to determine the sensitivity of this numerical solution to
the accuracy of the values chosen for the geomagnetic and interplanetary
parameters, a series of solutions of this type were generated wherein each
parameter was varied in turn by + 204 and % 40% (except O, which was varied
from 0.6 to 1.0 in steps of 0.1). These solutions are displayed in
Figures 6 to 19, where each figure illustrates the effect of varying
a single parameter. Several observations can be made (by "width" we will
mean "semi-major axis" and by "thickness" we will mean "semi-minor axis'):

Specific

1. The strength of the interplanetary magnetic field seems to
have almost no effect on the width of the tail, and the thickness only
decreased by ~ 99 for a 404 increase in the field strength.

2. Variations in the temperature and density of the inter-
planetary plasma showed just what one would expect: larger or smaller
cross-sectional dimensions, but no significant change in eccentricity.

3. Variations in the solar wind velocity shdw no major
effects. The instability in the solution for the smallest velocity (240
km/sec) is more characteristic of the numerical method than of real
instabilities. Recalculation of this solution with a smaller step size
indicated that the "instability" was indeed method-dependent.

4., The effect 6f changing the angle between the interplanetary
magnetic field and the geomagnetic tail axis were somewhat surprising.
Especially at the larger angles, there was hardly any effect on the ultimate
thickness of the tail. Variations in the eccentricity merely reflect signi-

ficant variations in the width.



17

5. Since the geomagnetic field strength plays the dominant
role (at least in terms of internal forces) in determining the size of
the tail, while the toroidal component resists the anisotropic pressure
of the interplanetary magnetic field, the results shown in figure 10 are
what ome would expect. A 409 increase in the strength of the geomagnetic
tail field results in a ~ 404 increase in the cross-sectional area of the
tail, and a smaller eccentricity.

6. Figures 11 and 12 are consistent with the idea that the
geomagnetic tail plasma plays an insignificant role, and that any varia-
tions, therefore, have very little effect. This makes some of the somewhat
cavalier assumptions concerning the spatial distribution of this plasma less
significant.

7. In light of the Michel and Dessler argument, the effects
of changing the pitch angle of the geomagnetic tail field are surprising.
Michel and Dessler (1970) propose that the toroidal component of the geo-
magnetic tail field gives rise to one of the dominant forces opposing the
anisotropic pressure of the interplanetary magnetic field. Variations in
this component of 4 40% have, however, no discernible effect on the cross
sectional shape of the distant geomagnétic tail, at least in the context
of the present study.

8. Variations in the characteristics of the magnetopause
indicate no effect on the solution, with one exception: if either the
number density or the thickness become too small, instabilities appear
in the solution. As with V, these instabilities do not represent real,
physical instabilities, but are, rather, a function of the characteristics
of the numerical integration technique and precision of the computer used.

Again, as in the case of the instabilities encountered with V_, when
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steps were taken toward more precision in the solution (smaller step
size and/or double precision calculations) the instabilities were mo
longer apparent.

9. Changes in R, did little but change the overall size of
the cross section. Since this in.turn changed the amount by which the
interplanetary field was distorted, the eccentricity was affected.

10. Changing Q, seems to have little effect on the ultimate
dimensions of the tail cross section with the single exception thﬁt if
o, is much too low (or high, presumably) oscillations are set up in the

solutions which do not damp out.

General

11. It is reassuring that many of the parameters which are
most critical in the solution (e.g., Bip’ Bots nip) are also among the
best known, while some of the values least well known (e.g., Do) “mp)
have very small influence over the final configuration.

12. Figures 16 and 17 (variations of R, and Q) indicate
that R, ~ 27 Ry and Qp = 0.9 may be better initial values, but these
figures also indicate that the ultimate shape of the tail cross section
is relatively insensitivé to variations in R, and Op like these (~ 8% in R,

and ~ 104 in ).

With the confidence, then, that the solutions are at least behaving
reasonably and that the parameters suspected of being the least accurate
are also the least significant, thissolutioncan be extended out to ~10% Rp-
The results are shown in flgure 20 for the pgrameter values discussed above.
The two major observations to be made from this solution are:

1. Beyond ~ 3x103 Rg the tail becomes wider, but no thinner

(one does indeed expect an increasing cross sectional
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area, of course, since thé interplanetary pressures are
decreasing with increasing distance from the sun).

2. This solution does not support the assumption of Michel
and Dessler (1970) that at ~ 10% Rg the tail will be
~ 103 Ry wide and ~ 10 Rg thick.

Considering the second of these observations first, if the indications
of this solution are valid, they might have serious consequences for the
particle access model of Michel and Dessler (1970). The method which they
proposed by which electrons and low energy protons were to gain rapid access
to open geomagnetic field lines relied heavily on the geomagnetic tail
becoming filamentary. The process by which the tail was to become fila-
mentary relied, in turn, on the tail becoming very wide and very thin
(~ 103 Rgp x ~ 10 Rp). If the tail does not become so drastically thin,
then a mechanism by which the tail can become filamentary is not at all
obvious. If th? tail does not become filamentary, then the method which
they have proposed for the rapid access of low rigidity particles is no
longer applicable.

In addition, considering the first observation, it does not appear
from figure 20 that the tail cross section would ever approach such extreme
eccentricity: the semi-minor axis even seems to havé a minimum at ~ 5%x103 RE
and at ~ 104 Rg is increasing slightly.

This study has, of course, been predicated on some rather severe

assumptions, and one could_undoubtedly have more confidence in the accuracy
of a solution in which these assumptions were relaxed. Nevertheless,
within the limitations of these assumptions the solutions obtained are
consistent and reasonable, and the implications of these solutions are

straightforward.



Figure Captions

Representation of the shape of the distant geomagnetic tail, defining
the coordinate system used in this study and showing the curves used

in defining én.

Cross sectional view of distant tail showing the inter-relationships

among the variables discussed in the text.
Conformal transformation used to treat anisotropic pressures.

Illustration of the approximation involving linearization of the
variations in the cross section as a function of distance down the

tail.

Solution to equilibrium equations for typical values of geomagnetic
and interplanetary parameters; "Distance" is measured along the

“Xam axis from Xom = =20 RE'



Figures 6 through 18

Investigation of the sensitivity of the solution to the equilibrium
‘equations for the surface of the geomagnetic tail shown in figure 5 to the
values of the geomagnetic and interplanetary parameters. Each of the

following parameters is varied in turn, usually by + 104 and + 20%:

Figure Parameter Values Parameter Description
Varied
6 Bip 3.0(1.0)5.0 y * Interplanetary magnetic field strength.
7 nip 4.2(1.4)9.8 cm"3 Number density of interplanetary plasma.
8 Tip 1.2(0.4)2.8 Okx10° Temperature of interplanetary plasma.
9 Vi 240(80)560 km/sec Solar wind velocity.
10 [coéllggfﬁg}II 27°(9°)63° Acute angle between interplanetary

_ magnetic field and geomagnetic field.
11 B 6(2)14 vy Geomagnetic field strength in tail.

12 nii 0.06(0.02)0.14 cm3 Number density of plasma in tail.

13 Tgt 0.6(0.2)1.4 °kx10° Temperature of plasma in tail.

14 Bot 1.9(0.6)4.5 Pitch angle of geomagnetic tail

pitch a. radians x 1073 field.

15 mp 60(20)140 km Thickness of magnetopause.

16 Dnp 60(20)140 cm™3 Number density of magnetopause plasma.

17 R, 15(5)35 Rg Semi-ma jor axis of cross section of
geomagnetic tail at Xy = -20 Rg.

18 Qy - 0.6(0.1)1.0 Ratio of minor axis to major axis

of geomagnetic tail cross section

at Xgy = =20 RE'

%*This notation indicates that the parameter was varied from 3 to 5
in steps of 1.



Figure 19

Extension of the solution shown in figure 5 to ~ 104

Rg.
This is the distance by which Michel and Dessler (1970)
predict a semi-major axis of ~ 103 Rg and an eccentricity
of ~ (1 - 10"5) (or O & 5x10'3). This study would indicate
typical values at ~ 104 Rg of 55 Rp for the semi-major a#is

and of ~ 0.9 (or o = 0.44) for the eccentricity.
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