Internal Report No. 47

Gordon Hurford September, 1974

Guide to IMP-H Integration and
Quick Look Printouts

Table of Contents

Page
I. Introduction 1
II. Headings 2
A. Quick Look Printout 2
B. Integration Printout 2
III. Selected Events 5
A. Format 5
B. Criteria 5
IV. Event Summary 8
V. Rate Block 10
VI. Normalized Rates 14
VII. Other Fields 15
A. COMSTAT 15
B. PROP 15
C. TEMP 15
VIII. Plots 15

List of Tables

Number Page

1

2
3

4

Interpretation of Sector Numbers
Ranges Included in Event Summary and Plots
Page Numbers and Sub-Com States
Rates - Calculation and Corrections
Axis Compression for Plots
Plotted Symbols

List of Figures

Sample Summary Page
Integration Printout Heading4

Sample Selected Event Page 6
Sample of Plot Number 1 19

Column Number Overlay
Plot 1 Overlay
Plot 2 Overlay
Plot 3 Overlay 23

Plot 4 Overlay

I. Introduction

This guide assumes that the reader is familiar with the IMP-H Electron Isotope Spectrometer, described in SRL Internal Report 50. It is intended to serve as a reference source for the conventions and parameters that were assumed in the programs which produced the printouts as well as to acquaint him with some potentially misleading features of the integration and quick look printouts.

There are three main ways in which the experiment data are displayed in the printouts. First a "Selected Event" display lists individual events. Second a "Summary Page" shows rate data and a sumary count of events by range, etc. Finally a set of four scatter plots displays events as a function of their pulse heights. Figures 1 and 3 show sample "Summary Page" and "Selected Event" pages which are discussed in Sections III-VII. The plots are described in Section $V 11$, Unless otherwise noted, the discussion below refers to both integration and quick look printouts. The PARET display option of the intem gration program will not be considered.

The Integration Printout Log (not included) lists all the available Integration Printouts by data, time, test conditions, etc., along with limited comments on experiment performance. The integration printouts themselves are in 5 blue binders labelled: INTEGRATION '71, TV 2, IMP-H INTEGRATION, Jan-July '72, IMP-H INTEGRATION, July-Aug '72, and TMP-H RFI TEST, 7-28-72.

A corresponding log is maintained for the Quick Look Data. The logs also indicate some of the transient bugs in the printouts.

II. Headings

A. Quick Look Printout

Referring to Figure 1 , field 1 contains descriptive information concerning the conditions under which the data was acquired. Usually this includes the bit rate and ground station identity. Field 2 indicates the orbit number (ascending node crossing number). Fields 3 and 4 give the UT at which the data was analyzed and acquired respectively. Field 5 gives an indication of data quality. All zeroes do not necessarily imply that all the data required to complete the display was successfully acquired. Field 6 indicates the version date of the MSOCC (Multi-Satellite Operational Control Center) computer program which produced this printout along with those of other experiments. In field 7 "ON LINE" and "OFF LINE" Data indicates whether the printout was produced in real time. Field 8 refers to the EIS power. Field 9 indicates whether the sectored rates were acquired in the OA SLAVE or TM SLAVE mode. Fields 8 and 9 are unreliable in the first two pages of the printout.

B. Integration Printout

Figure 2 shows the corresponding integration printout heading. Although rearranged, the fields have the same significance as described above. In this case the bit rate is shown separately in Field 10. Fields 8, 9 \& 10 are meaningful only on the second and subsequent pages of the printout. On the first page, the following "default" values are always printed:

POWER OFF
OA TM (means TM SLAVE)
HI BIT RATE.

－	OAR．	9	5	6		H－8	0		6789		0	0－6		0		
	Haz	3	56	2		2－48	0		5－T		0	0－46		0		
	C9m	35	5－7	0		$\mathrm{H}-9$	0		5 HoT		0	0.7		0		
－	P23	62	5－8	0		2－HS	0		0		23	0.47		0		
	UvC	\bigcirc	5－9	0		7	－． 2		31		1	0.3		0		
	2	5	46	0		67	0		3－3		0	0－48		0		
${ }^{-}$	25	\bigcirc	2－H6	0		78	1		0－4		0	0.9		0		
	こう	0	H67	0		678	5		3－5		0	0.49		0		
	54	0	2－H7	0		789	0		$2 \cdot 5 \mathrm{H}$		0	U1		28		
	－		．－				N8RM	ED P	TES							
	E－G	0.05	PLO	0.00	00		78.20	D3		10.25			9.35		D10	14.07
	EHI	3． 22	Phi	$0 \cdot 00$	01		8.15	04		12.10			9.20		D11	358.85
	ごミUT	2． 28	Do	0.65	D2		1.85	D5		9.75			8.00		ADE	30.75
\because	PEN	2.20	CO1：	0.05	DEM		0.10	D5H		$0: 50$			8.75		haz	0.00

Figure 2. Integration Printout Heading

III. Selected Events

Figure 3 shows a sample page of selected events, each of which is displayed on one line of the printout.
A. Format for each 'selected event'
'PAGE' = the telemetry page ${ }^{\circ}(0,1,2,3)$ from which the data for this event was taken.
$N / P G=(0,1,, 31)=$ event number within that page.
RO, . RZ have the usual significance with T, C \& Z standing for D10, D11 \& HAZARD, respectively.

The unlabelled column is the analysis type.
A and B are the A and B. register pulse heights, after
the transformations have been made.
$S(=1, \ldots 8)$ is a number formed from the S bits in the digital scan data. Table 1 relates this bit pattern to the sector number used in identifying the sectored rates and to the direction of the telescope axis, with respect to the sun-satellite line.
B. Criteria for events to be displayed in the 'selected event field'

The printing option parameter (=PROP, displayed under the rate block
in Figure 1) determines which events are displayed in the selected event field. Usually PROP $=3$, in which case all new, correct parity events included in the event summary are listed

If $P R O P=0$, the $1 i s t i n g$ is suppressed.
If $P R O P=1$, only 'uncommon'events are printed.
 STENE CAL TECH CAI........................ SNE SNAPSHET 2 GFF LINE DATA SATELLITE CL

Table 1. Interpretation of Sector Numbers

Displayed	Sun referenced	〈Direction〉*
Sector \#	Sector \#	
1	3	$301{ }^{\circ}$
2	2	$346{ }^{\circ}$
3	0	76°
4	1	31°
5	4	$256{ }^{\circ}$
6	5	$211{ }^{\circ}$
7	7	$121{ }^{\circ}$
8	6	166°

Note that to be considered new in these programs, either the A or B registers must be non-zero. Therefore D0 single events with zero pulse height will be neither counted as new nor displayed.

IV. Event Summary

Referring to Figure 1 , the display consists of 45 different sums of events, arranged in 5 columns of 9 each. Six of these sums are described below while the remaining 39 sums are defined in Table 2. These 39 are range sums in which only good parity, new, non-hazard events are included. If PROP $=3$ then the sums are over same set of events included in the preceeding 'Selected Event' 1ist. PAR (Parity error) - parity error in at least one channel (may also count half sequences for which there is no data especially at beginning or end of an interval).

HAZ (Hazard)
PR3 (Priority 3)

COM (Common)

UNC (Uncommon)

U1 (Not new event)

- RZ set in a new, good parity event.
- new, good parity, non-hazard events in which R11 was set.
- a new, good parity, non-hazard event whose range bits corresponded to 1 of the 39 combinations listed in Table 2.
- a new, good parity, non hazard, event with whose range did not correspond to any of these combinations.
- a good parity, not new event (or a new D0 single event with zero pulse height).

Table 2. Ranges included in Event Summary and Plots

Labe 1	Range	Plot	X Axis	Y Axis
2	D2	1	D2	-
25	D25	1	1	D5
25H	D25H	1	"	"
5H	D5H	1	-	"
5	D5	2	D5	-
56	D56	2	"	Σ
5-7	D567	2	11	11
5-8	D5678	2	11	"
5-9	D56789	2	11	"
H6	D5H6	2	"	"
2-H6	D25H6	2	"	"
H67	D5H67	2	"	11
$2-\mathrm{H} 7$	D25H67	2	"	11
H-8	D5H6 78	2	"	11
2-H8	D25H678	2	11	11
H-9	D5H6789	2	11	1
2-H9	D25H6789	2	11	"
7	D7	2	-	1
67	D67	2	-	1
78	D78	2	-	"
678	D678	2	-	11
789	D789	2	-	"
6789	D6789	2	-	"
5-T	D56789T	3	D5	11
$5 \mathrm{H}-\mathrm{T}$	D5H6789T	3	"	11
0	D0	4	D0	0
01	D01	4	"	Σ
0-3	D013	4	"	11
0-4	D0134	4	"	"
0-5	D01345	4	"	11
0-5H	D01345H	4	"	11
0-6	D013456	4	"	"
0-H6	D01345H6	4	"	11
0-7	D0134567	4	"	"
0-H7	D01345H67	4	"	1
0-8	D01345678	4	"	1
0-H8	D01345H678	4	1	1
0-9	D013456789	4	"	1
0-H9	D01345H6789	4	"	"

Let $N S U M=$ total number of events summarized.
Then NSUM $=\mathrm{PAR}+\mathrm{HAZ}+\mathrm{COM}+\mathrm{PR} 3+\mathrm{UNC}+\mathrm{U} 1$
and $C O M={ }^{\prime} 2^{\prime}+{ }^{\prime} 25^{\prime}+{ }^{\prime} 25 \mathrm{H}^{\prime}+\ldots+{ }^{\prime} 0-\mathrm{H} 9^{\prime}$.

The time interval covered by the event summary is not coincident with the time interval over which the rates were accumulated. With the exception noted below, all the rates are accumulated over an integral number of subcom states. In the first subcom state, only events 8-31 are included in the sum. In addition the first 8 events in the subcom state following the rate accumulation period are also included except for the last summary period before the plots are printed, in which case, the first 18 events in the following subcom state are included.

Therefore if NSCS is the total number of subcom states over which rates were accumulated,

$$
\text { NSUM }=32 \times \text { NSCS } \quad(+10)
$$

where the $(+10)$ should be included only if this is the last summary display before the plots.

V. Rate Block

The format of the rate block is largely self-explanatory. The N/PG gives the number of subcom states (or data pages) over which each rate was accumulated. Rates are summed over sectors and over snapshots within each subcom state before being displayed.

If the equation:

$$
\text { NSUM }=32 * \operatorname{NSCS}[+10]
$$

explained in Section $I V$ is not satisfied or if all four N/PG values are not the same, then the rate block data should be regarded as suspect, since all the rates may not have been accumulated over the full number of subcom states shown.

Table 3 correlates the page $\frac{\|}{}$ used in identifying events in time with the subcom states during which rates were accumulated and with the pages in which the rate data appears in the telemetry.

Because the program uses a 24 bit accumulator, negative numbers are displayed if the entry is greater than $2^{23}-1(8,388,607)$. If ($-N$) is displayed, the entry should read $(16,777,216-N)$.

The rate block values may also reflect a round-off error due to the 24 to 12 and 24 to 10 bit compression in the telemetry. Table 4 shows the significance of this.

Table 3. Page Numbers and Sub-Com States

Table 4. Rates - Calculation and Corrections

Rate	Formula Used	Renormalization Constant			Rate Compression Error		
		HI BITRATE		LO BITRATE	Max	Max \%	
		OA MODE	TM MODE	OA MODE	'Exact Va		Error*
ELO	$(\mathrm{A} 1+\mathrm{A} 3) /(\mathrm{N} 1+\mathrm{N} 3)$	1.115	. 977	4.568	- 25	1.6\%	. 11%
EH1	($\mathrm{B} 2+\mathrm{B4} 4) /(\mathrm{N} 2+\mathrm{N} 4)$	1.115	. 977	4.568	25	1.6\%	. 11%
PLO	$(\mathrm{A} 2+\mathrm{A} 4) /(\mathrm{N} 2+\mathrm{N} 4)$	1.115	. 977	4.568	25	1.6\%	. 11%
PHI	$(\mathrm{B} 1+\mathrm{B} 3) /(\mathrm{N} 1+\mathrm{N} 3)$	1.115	. 977	4.568	25	1.6\%	. 11%
PEN	E4/N4	1.115	. 977	4.568	25	1.6\%	.16\%
NEUT	(F41+..F44)/(N1+.. $+\mathrm{N} 4)$. 977	. 977	977	51	. 4%	.03\%
D0*	C2/N2	1.115	. 977	4.568	25	1.6\%	. 16%
D01*	E2/N2	1.115	. 977	4.568	25	1.6\%	. 16%
D0	$\mathrm{C} 1 / \mathrm{N} 1$	1.115	. 977	4.568	25	1.6\%	. 16%
D1	F11/N1	. 977	. 977	. 977	25	. 4%	. 08%
D2	F24/N4	. 977	. 977	. 977	25	. 4%	. 08%
D2H	C4/N4	1.115	. 977	4.568	25	1.6\%	. 16%
D3	F21/N1	. 977	. 977	. 977	25	. 4%	.08\%
D4	F31/N1	. 977	. 977	. 977	51	. 4%	. 06%
D5	C3/N3	1.115	. 977	4.568	25	1.6\%	. 16%
D5 H	F33/N3	. 977	. 977	. 977	51	. 4%	. 06%
D6	F12/N2	. 977	. 977	. 977	25	. 4%	. 08%
D7	F22/N2	. 977	. 977	. 977	25	. 4%	.08\%
D8	F13/N3	. 977	. 977	. 977	25	. 4%	.08\%
D9	F23/N3	. 977	. 977	. 977	25	. 4%	. 08%
D10	(F32+F34)/($\mathrm{N} 2+\mathrm{N} 4$)	. 977	. 977	. 977	51	.4\%	. 04%
D11	E3/N3	1.115	. 977	4.568	25	1.6\%	16\%
ADC	E1/N1	1.115	. 977	4.568	25	1.6\%	.16\%
HAZ	F14/N4	. 977	. 977	. 977	25	. 4%	. 08%

$N x=y \cdot N / P G$ entry for $\operatorname{SCS} x$, where $y=20$ (hi bit rate)

$$
=80 \text { (lo bit rate) }
$$

${ }^{+}$for HI BIT RATE, OA SLAVE mode.
*assuming a 1 album sum and random input.

VI. Normalized Rates

Table 4 also shows how the normalized rates are calculated. Note that the normalization routine assumes all rates are accumulated for 20 seconds/ subcom state (80 seconds at the low bit rate). This introduces a systematic error in all the normalized rates which is listed in Table 5 as a "renormalization constant".

True Rate = (Displayed Rate) * (Renormalization constant)
The effect is between -3% and $+12 \%$ for nominal spin periods at the high bit rate.
Also tabulated are estimates of the uncertainty due to rate compression. This uncertainty will be less than statistical errors for random data at rates below $20,000 / \mathrm{sec}$.

There are several conditions under which the normalized rates may be grossly incorrect.

1. The normalized rate display 'saturates' at $8360 . /$ sec (2067./sec at the low bit rate; 837 /sec for integration data analyzed before Feb 4, '72).
2. Negative entries in the rate block void the corresponding normalized rate.
3. If the sum of the accumulated counts for any normalized rate exceeds $2^{23}-1(8,388,607)$, the display will be incorrect.
4. At low bit rates or abnormal spin periods, some of the normalized rates may be significantly in error.
5. If $N / P G=0$ in the rate block, the corresponding normalized rates may be large and meaningless.
6. If the NSUM check described in Section IV is not satisfied, or if all N/PG entries are not the same, the normalized rates should be considered suspect.

In cases 1 to 4 , the correct value can be recovered from the rate block data.

VII. Other Fields

A. COMSTAT

The field to the right of 'SECOND' represents the command status at the end of the summary period. The field to the right of 'FIRST' refers to an undetermined earlier time.

A blank field implies all detectors enabled; disabled detectors are represented by the characters $0,1, \ldots, 9, \mathrm{~T}, \mathrm{C}$.
B. PROP

This specifies the selected event printing option described in Section III B.
C. TEMP

The chassis temperature in degrees C displayed here is meaningful only when experiment power is $O N$.
VIII. PLOTS

Each set of 4 scatter plots shows all the 'COMMON' events that were counted during the preceding Event Summery. Each event is assigned to the plot appropriate to its range; and assigned an X and Y coordinate according to its A and B pulse heights. Each plot shows the number of events as a function of their X and Y coordinates. If the number of events exceeds is 10 or more, letters are plotted as shown in Table 6.

Table 2 shows the event ranges that are assigned to each plot, along with the corresponding interpretation of the X and Y axes. Table 5 shows the compression schemes used to relate the A and B values to the limited number of X and Y coordinates available. The compression scheme displays the low channels with full resolution, while higher channels are compressed to distinguish hydrogen and helium isotope tracks. Higher Z particles (and underflows) appear along the outer edges.

The plots themselves are not labeled, but are always printed in the same order. The numbers 0 thru 54 appearing along the left edge identify the number. A sample of Plot 1 is shown in Figure 4.

Note that neutral particles appear along the left edge of plot 2, while D5 singles appear along the upper edge of Plot 1 .

In the quick look printouts, the plots are cumulative (appearing every 10 albums or so) starting from the beginning of the run. The integration program, however, effectively clears the 'plot accumulator' after each set of plots.

Figures 5 to 9 are copies of the overlays * which may be helpful in interpreting the plots. The first merely is used to interpolate the column numbers while the other 4 represent 'predicted instrument response'. Energies shown represent 'detected energy' as opposed to incident energy. Full size transparencies of the overlays are available.

[^0]Table 5. Axis Compression for Plots

*The X axis values of $1-128$ correspond to columns, counting left to right. The Y axis values of $0-53$ correspond to rows, counting top to bottom.

Table 6. Plotted Symbols

Symbols	Nmin - Nmax
Blank	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	$8-9$
A	$10-11$
B	$12-13$
C	$14-15$
D	$16-19$
E	$20-23$
F	$24-27$
G	$28-31$
H	$32-39$
J	$40-47$
K	$48-55$
L	$56-63$
M	$64-79$
N	$80-95$
P	$96-111$
R	$112-127$
S	$128-159$
T	$160-191$
U	$192-223$
V	$224-255$
W	$256-319$
X	$320-383$
Y	$384-447$
Z	$448-511$
W	≥ 512

Figure 6
\checkmark

- Figure 8
等

[^0]: *Prepared by Mark Bleck, whose notes should be consulted for further details.

