STATISTICAL PROPERTIES OF ANISOTROPY MEASUREMENTS

The smallest anisotropy that can be measured with confidence is limited by the accuracy of the directional intensity measurements. This internal report will examine how the statistical uncertainties in one's data propagate into uncertainties in dernived anisotropies. It will be shown how to determine confidence intervals for a data sample or conversely how many counts are needed in order to measure a given anisotropy with a desired level of confidence.

The first part of this report will define the terms used. The next section will be a general discussion of the mathematical derivations with the gory details relegated to an Appendix. The results and examples of their application will be given in the final section.

INTRODUCTION

This report is concerned with the measurements of anisotropies by sampling directional intensities. The IMP instruments, for example, accumulate rates in eight different sectors corresponding to eight equally spaced directions in space. This report will assume ideal instruments for which corrections due to dead times or finite opening angiès can be neglected. It is also assumed that the sectors have an equal width in angle.

Given the accumulated rates for the different sectors it is possible to fit a cosine expansion to the data. Let γ_{i} be the number of counts from sector \boldsymbol{i} and θ_{i} be the angle corresponding to sector i. Then the γ_{i} 's can be approximated by the function

$$
\psi\left(\theta_{i}\right)=A+A_{1} \cos \left(\theta_{L}-\phi\right)
$$

The anisotropy amplitude is associated with A_{1} / A and the direction of the anisotropy is ϕ.

Generally a least squares fit is made to the data using this function and the resulting values are called the anisotropy amplitude and direction of the data sample. The remainder of this report will concern the relationship between these computed values and the corresponding values of the distribution sampled.

MATHEMATICS

Given a measured anisotropy amplitude, an experimenter still needs to determine the anisotropy amplitude of the distribution sampled. Appendix 1 gives a derivation of the probability of different anisotropy amplitudes given a measured amplitude. The method used is as follows : 1) a transformation is made to different parameters to describe the anisotropy
2) the probability of measuring an anisotropy given a true anisotropy distribution is determined 3) an assumption is made as to the apriori likelihood of observing an anisotropy
4) Bayes Theorem is applied and
5) a transformation
back to the original parameters is made.
Although the variables A, A_{7}, and ϕ give a convenient physical description of a distribution, they result in non-linear equations when one tries to make a least squares fit to a data sample. Consequently a change of variables is made to A, \propto and β where $\alpha=A_{1} \cos \phi$ and $\beta=A_{1} \sin \phi$

This is essentially just a transformation from polar to rectangular coordinates. With these new variables the least squares fitting results in linear equations which can readily be solved for A, α and β.

Uncertainties in the values of the γ_{i} 's propagate into uncertainties in the values of A, α and β. The assumption is made that the uncertainties in the γ_{i} 's are all equal. This assumption
leads to an enormous simplification in the equations for $A, ~ \propto$, and β and the corresponding uncertainties. It also makes subsequent probability calculations tractable. This assumption will be a good approximation if, for example, the anisotropy amplitude is small and the uncertainties in the γ_{i} 's are due to Poisson statistics.

The next step is to determine the probability of observing a distribution that is characterized by A, α, and β given a true distribution that is exactly a first order cosine expansion. At this point another approximation is made. It is assumed that the relative uncertainties in A are small compared to the relative uncertainties in α or β. Again this will be a good approximation if the anisotropy amplitude is small.

The following diagram is a contour map of the relative probabilities of observing α and β given the corresponding parameters α_{0} and β_{0} of the true distribution.

The probability distribution for observing (α, β) is a twodimensional Gaussian centered at $\left(\alpha_{0}, \beta_{0}\right)$ and is a function only of the distance from $\left(\alpha_{0}, \beta_{0}\right)$. This distance is labelled
t in the previous figure. From now on it will be assumed that the axes have been rotated so that $\beta_{0}=0$. Thus α_{0} is proportional to the anisotropy amplitude.

The measured anisotropy amplitude is proportional to the distance to the origin (labelled ρ in the previous diagram) so the probability of observing an anisotropy amplitude is simply related to the probability of ρ. Thus the probability of observing any anisotropy amplitude given a true distribution completely characterized by A, A_{1}, and ϕ can be calculated.

The anisotropy amplitudes are divided by a scale factor z defined by:

$$
\begin{aligned}
z=w(2 / s)^{1 / 2} \sigma / A \quad \text { where } \quad w & =(\pi / s) / \sin (\pi / s) \\
s & =\text { number of sectors } \\
\sigma & =\text { uncertainties in } \gamma_{i}^{\prime} s \\
A & =\text { average number of counts/sector }
\end{aligned}
$$

z is roughly the anisotropy amplitude expected if the true distribution is isotropic. w is a smoothing factor that corrects for the fact that sampling finite angle bins reduces the measured anisotropy amplitude. For 8 sectors and Poisson uncertainties $z=1.451 N^{-1 / 2} \quad$ where N is the total number of counts Let. $r=\delta_{\text {observed }} / z$ and $x=\delta_{\text {true }} / z$

Then $P(r \mid x)=e^{-r^{2} / 2} \times e^{-x^{2} / 2} I_{0}(X r)$

Some of the properties of this distribution are displayed in Figure 1 . The solid line shows the most probable value of r as a function of x. Also shown are the 68.2% and 95.4% confidence intervals. There is a 68.2% probability that an observed r will be within the 68.2% confidence interval. Furthermore the interval is chosen to minimize its length.

Now making an assumption for the apriori likelihood of a given anisotropy amplitude and applying Bayes' Theorem, one can compute the probability that the true distribution is characterized by a given anisotropy amplitude if one measures a particular anisotropy amplutude. Unless otherwise stated all amplitudes are assumed equally likely apriori.

The results of this derivation are presented in the next section.

RESULTS

These results are only valid for anisotropy amplitudes much less than one and uncertainties in the count rates in all sectors roughly equal.

As discussed in the last section and shown in the Appendix the anisotropy amplitude and direction can be computed from the observed Y_{i} 's by fitting the funcitonal form:

$$
A+\alpha \cos \theta_{i}+\beta \sin \theta_{i}
$$

and setting $A_{1}=\left(\alpha^{2}+\beta^{2}\right)^{1 / 2}$ and $\phi=\tan ^{-1}(\beta / \alpha)$
Using the approximation that all the uncertainties in the Y_{i} 's are equal, the best fit is made in the least squares sense when

$$
\begin{aligned}
A & =(1 / s) \sum Y_{i} \quad \text { where } s \text { is the number of sectors } \\
\alpha & =(2 / s) \sum Y_{i} \cos \theta_{i} \\
\beta & =(2 / s) \sum Y_{i} \sin \theta_{i}
\end{aligned}
$$

The anisotropy amplitude is given by

$$
\delta=w\left(A_{1} / A\right)
$$

where w is the smoothing factor defined in the previous section. Again we define the scaling factor z

$$
z=w(2 / s)^{1 / 2} \sigma / A
$$

and $\quad r=\delta_{0 b s} / z$

$$
x=\delta_{\text {true }} / z
$$

z is approximately the anisotropy amplitude expected if the true distribution is isotropic.

Now the probability of x given the observation r is :

$$
P(x \mid r)=(2 / \pi)^{1 / 2} e^{-r^{2} / 4} e^{-x^{2} / 2} I_{0}(x r) / I_{0}\left(r^{2} / 4\right)
$$

where I_{0} is the zero order modified Bessel function. This probability distribution is plotted for $r=0,2$, and 3 in Figure 2. Figure 3 is a plot of the mode and 68.2% and 95.4\% confidence intervals for this distribution.

As mentioned above z is approximately the anisotropy due to the noise on the measurement. If the measured anisotropy amplitude if much larger than z (that is, when r is much larger than one), z becomes the sigma for the true anisotropy distribution. In the other limit, as the measured anisotropy becomes much smaller than z (r nearly zero), the most likely true anisotrppy is zero and the distribution becomes a onesided Gaussian. In fact, for all values of r less than the square root of 2 the mostly likely value of the true anisotropy is zero.

Figure 4 is a plot of the relative accuracy of a measurement as a function of the total number of counts (assuming Poisson statistics). The relative accuracy if defined as the length of the 68.2% confidence interval divided by the most probable anisotropy amplitude. The uppermost line shows how many counts are required so that the 68.2% confidence interval is only 10% of the most probable anisotropy. Also shown is the 60% accuracy line. The bottom line shows where the most probable value is zero, below which only upper limits can be placed on the value of the true anisotropy.

Thus far we have assumed that all anisotropy amplitudes are équally likely apriori. Other assumptions are possible. For example, one might assume that all values of α and β are apriori equally likely This corresponds to assuming that the apriori probability of an anisotropy amplitude is proportional to the amplitude. This assumption has the result that the probability distribution for an anisotropy amplitude given a true distribtuion is the same as that for the true distribution given an observation. Thus Figure 1 does double duty.

Calculations similar to those described above can be made for the propagation of errors in the determination of A and ϕ. The standard deviation in A is U / \sqrt{S}. The standard deviation in $\$$ has been determined in the limit of large r :

$$
\sigma_{\phi}=\sigma_{s} / \delta
$$

Define

$$
\begin{aligned}
& \alpha=A_{1} \cos \phi \\
& \beta=A_{1} \sin \phi_{1}
\end{aligned}
$$

So $\quad A_{1}=\sqrt{\alpha^{2}+\beta^{2}} \quad \phi=\tan ^{-1}(\beta / \alpha)$
Each sector observes Y_{L} counts
Assume each Y_{i} has σ_{i} associated with it.
Assume $\quad(\forall c) \quad \sigma_{i}=\sigma$
Now minimize least squares

$$
\mu^{2}=\sum\left[Y_{L}-\psi\left(\Theta_{L}\right)\right]^{2}
$$

Easy to show that (see Appendix 2)

$$
\begin{array}{lrl}
A & =\frac{1}{5} \sum Y_{i} & \text { where } s \text { is number } \\
\alpha=\frac{2}{5} \sum Y_{i} \cos \theta_{i} & \beta=\frac{2}{5} \sum Y_{i} \sin \theta_{i}
\end{array}
$$

where S is number of sectors

From these
Anisotupey $\operatorname{Amp} \xi=W \cdot A_{1} / A$

$$
\text { Phase } \phi=\tan ^{-1}(\beta / \alpha)
$$

where $w=\frac{\pi}{5} / \sin \left(\frac{\pi}{5}\right)$ is $5 m o o t h i n g$ factor 2

Would now like to determine an error estimate of these parameters

Standard Techinque ${ }^{3}$ to find σ un a function. or many vorubles

$$
\begin{gathered}
y=f\left(x_{1}, x_{2}, \ldots\right) \\
\text { is } \quad \sigma_{y}^{2}=\sum \sigma_{x_{i}}^{2}\left(\frac{\partial y}{\partial x_{i}}\right)^{2}
\end{gathered}
$$

However this only works $i t x_{i}$ are uncorrellated and that the most probable value for y is given by

$$
\bar{y}=f\left(\bar{x}_{1}, \bar{x}_{2}, \ldots\right)
$$

and the mean of a sample of $y^{\prime} s$ tends to \bar{y}

This technique will not always work for calculations a true anisotropy of O

$$
\xi\left(\bar{Y}_{i}\right)=0 \quad \text { but } \quad \bar{S}>0
$$

However σ_{α} and T_{β} can be calculated using above technique.

Appendix 3 shows.

$$
\begin{aligned}
& \sigma_{\alpha}=\sigma_{\beta}=\sigma \sqrt{2 / s} \\
& \sigma_{A}=\sigma / \sqrt{s}
\end{aligned}
$$

Assume we are sampling a distribution of form

$$
\psi=A_{0}+\delta_{0} \cos \theta
$$

Let the number of counts in a sector for this distribution be $N_{i}=A_{0}+\frac{J_{i}}{w} \cos \theta_{i}$.

A sample of this distribution yields n_{L} counts
for sector with uncertainty σ_{2}
Define

$$
\begin{aligned}
& y_{i}=n_{i}-N_{i} \\
& \text { so } \quad \sigma_{y_{i}}=\sigma_{i} \quad \text { and } \quad\left\langle y_{i}\right\rangle=0
\end{aligned}
$$

Make approx ($\forall i) \sigma_{i}=\sigma$
Compute α_{i} and β for n 's

$$
\begin{aligned}
\alpha_{n} & =\frac{2}{5} \sum n_{l} \cos \theta_{i}=\frac{3}{5} \sum\left(y_{i} \cos \theta_{i}+N_{i} \cos \theta_{i}\right) \\
& =\alpha_{y}+\frac{\delta_{a}}{w} \\
& \equiv \alpha_{y}+\alpha_{0}
\end{aligned}
$$

similarly

$$
\begin{aligned}
\beta_{n} & =\frac{2}{5} \sum y_{i} \sin \theta_{i} \quad+\frac{2}{5} N_{L} \sin \theta_{L} \\
& =\beta_{y}+0 \\
& =\beta_{y}
\end{aligned}
$$

Since n_{i} are isotropic

$$
\begin{array}{ll}
\left\langle\alpha_{n}\right\rangle=\alpha_{0} & \sigma_{\alpha_{n}}=\sigma \sqrt{2 / 5}=\sigma_{\beta_{n}} \\
\left.<\beta_{n}\right\rangle=0 &
\end{array}
$$

$A l_{s o}\left\langle A_{n}\right\rangle=A_{0} \quad \sigma_{A_{r}}=\sigma / \sqrt{s}$

$$
\begin{aligned}
& \text { So } \\
& P\left(\alpha_{n}\right) \cong \frac{1}{\sqrt{2 \pi} \sigma_{\alpha_{n}}} e^{-\left(\alpha_{n}-\alpha_{0}\right)^{2} / 2 \sigma_{\alpha_{n}}^{2}} .
\end{aligned}
$$

similarly fer β_{n}, A_{n} and since A_{n}, α_{n}, and β_{n} are indepontent incor cambunstios of saussian'y distributed vavicles ${ }^{6}$

$$
\begin{gathered}
P\left(\alpha_{n}, \beta_{n} A_{n}\right) \cong \frac{1}{2 \pi \sigma_{\alpha_{r}}^{2}},
\end{gathered} e^{-\left[\beta_{n}^{2}+\alpha_{n}^{2}-2 \alpha_{n} \alpha_{0}+\alpha_{0}^{2}\right] / 2 \sigma_{\alpha_{n}}^{2}},
$$

now define

$$
\begin{gather*}
x=\alpha_{n} / \sigma_{\alpha_{n}} \quad y=\beta_{n} / \sigma_{\alpha_{n}} \quad x_{0}=\alpha_{0} / \sigma_{\alpha_{n}} \\
P(x, y, A)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}+x_{0}^{2}-2 x x_{0}\right) / 2} \quad p\left(\alpha_{n}\right) \tag{n}
\end{gather*}
$$

define $r=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1}(y / x)$

$$
\begin{aligned}
& P\left(r, \Theta, A_{n}\right)=\frac{r}{2 \pi} e^{-\left(r^{2}-2 r x_{0} \cos \theta+x_{0}^{2}\right) / 2} \quad P\left(A_{n}\right) \\
& P\left(r, A_{n}\right)=\frac{r}{2 \pi} e^{-x_{0}^{2} / 2-r^{2} / 2} \int_{0}^{2 \pi} e^{+r x_{0} \cos \theta} d \Theta \quad P\left(A_{n}\right) \\
& P\left(r, A_{n}\right)=r e^{-x_{0}^{2} / 2-r^{2} / 2} I_{0}\left(x_{0} r\right) \quad P\left(A_{n}\right)
\end{aligned}
$$

This is probability that a sample distribution sean be charactariz-d by r, An
given that true distribution has characteristic. given that true distribution has characteristic x_{0}, A_{0} That is, this is

$$
p\left(r, A_{n} \mid X_{0}, A_{0}\right)
$$

from Bayes' Theorem

$$
\frac{p\left(x_{015}, A_{01} \mid r, A_{n}\right)}{P\left(X_{01}, A_{01} \mid r, A_{n}\right)}=\frac{P\left(X_{01}, A_{1}\right) P\left(r, A_{1} \mid X_{011} A_{01}\right)}{P\left(X_{02}, A_{1}\right)}
$$

Assuming all AA's $+\delta_{0}^{\prime \prime}$ ' ${ }^{\prime}$ equally likely \therefore then all, x_{0} 's are qually likely and

$$
\begin{aligned}
& P\left(x_{0} A_{0}\right)=P\left(x_{0}, A_{0} \mid r, A_{n}\right)=\frac{e^{-x_{0}^{2} / 2} I_{0}\left(x_{0} r\right)}{\int_{0}^{\infty} e^{-x_{0}^{2} / 2} I_{0}\left(x_{0} r\right) d x_{0}} \frac{e^{-\left(A_{0}-A_{n}\right)^{2} / 2 \sigma_{A_{m}}^{2}}}{\sqrt{2 \pi}} \sigma_{A_{n}} \\
& P\left(x_{0}, A_{0}\right)=\frac{\sqrt{3 / \pi} e^{-r^{2} / 4}}{I_{0}\left(r^{2} / 4\right)} e^{-x_{0}^{2} / 2} I_{0}\left(x_{0} r\right) \quad P\left(A_{0}\right) \\
& =P\left(x_{0}\right) P\left(A_{0}\right)
\end{aligned}
$$

The characteristics of $P\left(x_{\theta}\right) \quad$ are given in Figs 1 and 2

We will now relate $r+x_{0}$ to $\mathcal{F}_{\text {obs }}$ and $\mathcal{S}_{\text {time }}$

$$
\begin{aligned}
& x_{0}=\alpha_{0} / \sigma_{\alpha_{n}}=\frac{\delta_{0}}{w} / \sigma \sqrt{2 / s} \\
& x_{0}=\frac{\delta_{0} \sqrt{s / 2}}{w} \\
& r=\sqrt{x^{2}+w^{2}}=\frac{\sigma_{\alpha n}^{-1} \sqrt{\alpha_{n}^{2}+\beta_{n}^{2}}=\frac{\left(A_{1}^{\prime}, S^{\prime} / w\right)}{\sigma^{\prime}}=\sqrt{s / 2}}{}
\end{aligned}
$$

True anisotropy is $\zeta_{0}=\frac{\mathcal{S}_{0}}{A_{0}}$

$$
\begin{aligned}
\xi_{0} & =\frac{x_{0}}{A_{0}} \frac{w \sigma}{\sqrt{s / 2}} \\
P\left(\xi_{0}\right) & =\int P\left(x_{0}=\frac{s_{0} A_{0} \sqrt{\frac{s}{2}}}{w \sigma}\right): P\left(A_{0}\right) d A_{0} \\
& \approx P\left(x_{0}=\frac{\xi_{0}^{\prime} A^{\prime} \sqrt{s / 2}}{w \sigma^{-1}}\right) \int P\left(A_{0}\right) d A_{0} \\
& =P\left(x_{0}=\frac{s_{0}^{\prime} A^{\prime} \sqrt{s / 2}}{w \sigma^{\prime}}\right)
\end{aligned}
$$

have approximate $P\left(A_{0}\right)$ as feta function at A_{n} The scale size for variations in $P\left(A_{0}\right) \sim \sigma_{A}=\sigma / \sqrt{s}{ }_{1}=\sigma$
A change in A_{0} of $\sigma / \sqrt{5}$. leeds to change in X_{0} of $\frac{S_{0} \sqrt{8 / 2}}{W \sigma} \frac{\theta^{2}}{\sqrt{s}}=\frac{S_{0}}{W \sqrt{2}}$

$$
\frac{\Delta x_{0}}{\lambda_{x_{0}}}=\frac{s_{0} / w \sqrt{2}}{1}=\frac{s_{0}}{w \sqrt{2}}
$$

So approximation valid for $\xi_{0} \ll 1$

Thus to find $P(s$,$) in this approximation$
Define

$$
z=\frac{w \sigma^{\prime}}{A^{\prime} \sqrt{s / 2}}
$$

Now

$$
r=s^{\prime} / z
$$

and

$$
P\left(s_{0}\right)=P\left(x_{0}=\frac{\xi_{0}}{z}\right)
$$

using Jug 1 to chapracterge distribution

Remains uncertainty in ϕ

$$
\phi=\tan ^{-1}(\beta / \alpha)
$$

have some prablems about wrop around, $\tan ^{-1}(0 / 0)$
have $P(r, \theta)=\frac{r}{2 \pi} e^{-\left(r^{2}+x_{0}^{2}-2 r x_{0} \cos \theta\right) / 2}$

$$
\begin{aligned}
& P(\theta)=\frac{e^{-x_{0}^{2} / 2}}{2 \pi} \int_{0}^{\infty} r e^{-r^{2} / 2+r x_{0} \cos \theta} d r \\
& P(\theta)=\frac{e^{-x_{0}^{2} / 2}}{2 \pi}\left[1+\frac{x_{0} \cos \theta}{2} \sqrt{2 \pi} e^{x_{0}^{2} \cos ^{2} \theta / 2}\left[1+\Phi\left(+\frac{x_{0} \cos \theta}{\sqrt{2}}\right)\right]\right.
\end{aligned}
$$

I w probibility inta, wal!

$$
\Phi(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \equiv \operatorname{erf}(x)=-\operatorname{ert}(-x)
$$

$\cos _{2} X_{0} \rightarrow 0$
$P(\theta)=\frac{1}{2 \pi}\left[1+x_{6} \sqrt{2} \cos \theta\right]$ 暗 goe to constant cuntered @ $\Theta=0$

$$
\begin{aligned}
& x_{0} \rightarrow \infty \\
& P(\theta)=\frac{e^{x_{0}^{2} / 2}}{2 \pi}\left[x_{0}^{\prime}+x_{0} \cos \theta \sqrt{2 \pi} e^{x_{0}^{2} \cdot \cos ^{2} \theta / 2}\right] \\
&=\frac{x_{0} \cos \theta}{\sqrt{2 \pi}} e^{-x_{0}^{2}\left(1-\cos ^{2} \theta\right) / 2} \\
& P(\theta)=\frac{x_{0} \cos \theta}{\sqrt{2 \pi}} e^{-\sin ^{2} \theta x_{0}^{2} / 2}
\end{aligned}
$$

longe x_{0} wrell be ientind newn $\Theta=0$

$$
=\frac{x_{0}\left(1-\theta^{2} / 2\right)}{\sqrt{2 \pi}} e^{-\theta^{2} x_{0}^{2} / 2}
$$

so $\quad \sigma_{\Theta}=\frac{1}{x_{0}}:=\frac{\sigma_{x n}}{x_{0}}=\frac{w \sigma \sqrt{2 / 3}}{S_{0} A_{0}}$

$$
=\frac{\sigma_{s_{0}}}{\Sigma}
$$

Appordix 2.
Least Squares F.t

$$
\begin{aligned}
\psi_{L} & =A_{0}+\alpha \cos \theta_{i}+\beta \sin \theta_{i} \\
\mu^{2} & =\sum\left[-Y_{i}+\psi\left(\theta_{L}\right)\right]^{2} \\
& =\sum\left(-Y_{i}+A_{0}+\alpha \cos \theta_{i}+\beta \sin \theta_{i}\right)^{2} \\
0=\frac{\partial \mu^{2}}{\partial A_{0}} & =+2 \sum\left(-Y_{L}+A_{0}+\alpha \cos \theta_{L}+\beta \sin \theta_{L}\right) \\
& =-2 \sum Y_{L}+2 s A_{0}+2 \alpha \sum \cos \theta_{L}+2 \beta \sum \cos \theta_{L} \\
& =-2 \sum Y_{L}+2 S A_{0}
\end{aligned}
$$

or

$$
A_{0}=\frac{1}{s} \sum Y_{i}
$$

$$
\begin{gathered}
0=\frac{\partial \mu^{2}}{\partial \alpha}=\sum 2 \cos \theta_{i}\left(-Y_{i}+A_{0}+\alpha \cos \theta_{i}+\beta \sin \theta_{L}\right) \\
=-2 \sum r_{i} \cos \theta_{i}+2 \alpha \sum \cos ^{2} \theta_{i}
\end{gathered}
$$

or

$$
\alpha=\frac{2}{5} \sum Y_{i} \cos \theta_{i}
$$

Similarily

$$
\beta=\frac{2}{s} \sum Y_{i} \sin \theta_{i}
$$

Appendix 3

$$
\begin{aligned}
\alpha & =\frac{2}{s} \sum Y_{i} \cos \theta_{i} \\
\sigma_{\alpha}^{2} & =\sum \sigma_{i}^{2}\left(\frac{\partial \alpha}{\partial Y_{i}}\right)^{2} \\
& =\sigma^{2} \sum \frac{4}{s^{2}} \cos ^{2} \theta_{i} \\
& =\frac{4 \sigma^{2}}{5^{2}} \frac{s}{2} \\
& =2 \sigma^{2} / s
\end{aligned}
$$

on

$$
\sigma_{\alpha}=\sigma \sqrt{2 / 5}
$$

σ_{β} works same way.

$$
\begin{aligned}
A_{0} & =\frac{1}{s} \sum Y_{L} \\
\sigma_{A_{0}}^{2} & =\sum \sigma_{i}^{1}\left(\frac{\partial A_{0}}{\partial Y_{i}}\right)^{2}=\sum \sigma^{2} \frac{1}{s^{2}} \\
& =\sigma^{2} / s \\
\sigma_{A_{0}} & =\sigma / \sqrt{s}
\end{aligned}
$$

Footnotes

1
Zwickl a Webbor New Hampshri Conf
2 Chapman \& Barkels Geomagnetism Val II
3 Bounston, P. Data Redaction and Error Anaiysis for tho Physctal Scioncess
4 Abrainowite, M.rand Stesun, I Hardbook of Matiomatical Functins
5 Gradshteyn and Ryzhik p $710 \quad 6.618 \quad 1$.
6 Cramér, H. Mathematical Methods of Stotistiss p319

