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STATISTICAL PROPERTIES OF ANISOTROPY MEASUREMENTS 

The smallest anisotropy that can be measured with confiden~e is 

limited by the accuracy of the directional intensity measurements. 

This internal report will examine how the statistical uncertainties 

in one's data propagate into uncertainties in dert ived anisotropies . 

It will be shown how to determine confidence intervals for a data 

sample or conversely how many counts are needed in order to measure 

a given anisotropy with a desired level of confidenc·e. 

The first part of this report will define the terms used . • 

The next section will be a general discussion of the mathematical 

derivations with the gory details relegated to an Appendix. 

The results and exa~ples of their application will be given in the 

final section. 
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INTRODUCTION 

This report is concerned with the measurements of anisotropies 

by sampling directional intensities. The IMP instruments, for 

example, accumulate rates in eight different sectors corresponding 

to eight equally spaced directions in space. This report will assume 

ideal instruments for which corrections due to dead times or finite 

opening ang1es can be neglected . It is also assumed that the sectors 

have an equal width in angle. 

Given the accumulated rates for the different sectors it is 

possible to fit a cosine expansion to the data. Let Yi be the 

number of counts from sector i and 9i be the angle corresponding 

to sector i. Then the Y;'s can be approximated by the function 

The anisotropy amplitude is associated with A1/A and the direction 

of the anisotropy is 4>. 
Generally a least squares fit is made to the data using this 

function and the resulting values are called the anisotropy 

amplitude and direction of the data sample. The remainder of this 

report will concern the relationship between these computed values 

and the corresponding values of the distribution sampled . 
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MATHEMATICS 

Given a measured anisotropy amplitude, an experimenter stil l 

needs to detennine the anisotropy amplitude of the distribution 

sampled. Appendix 1 gives a derivation of the probability of 

different anisotropy amplitudes given a measured ampl itude . 

The method used is as follows : 1) a transformation is made 

to different parameters to describe .the anisotropy 

2) the probabi l ity of measuring an anisotropy given a true 

anisotropy distribution is determined 3) an assumption is 

made as to the apriori likelihood of observing an anisotropy 

4) Bayes Theo.rem is _applied and 5) a trans.formation 

back to the original parameters is made . 

Although the variables A, A1, and ~ give a convenient physical 

description of a distribution, they result in non-linear equations 

when one tries to make a least squares fit to a data sample. 

Consequently a change of variables is made to A, D<. and / 

where ex ~ A ( C0-5 ¢> onJ ,11 :::- A, ~ I t ) (j) 

This is essentially just a transformation from polar to rectangular 

coordinates. With these new variabl es t he least squares fitting 

results in l inear equations which can readi ly be solved for 

A ) IX Cl ,, j ;S . 

Uncertai nties in the values of the Vi ' s propagate into 

uncertainties in the values of A, <x and /' . The assumption is 

made that the uncertainties in the Yi 1 s are all equal. This assumption 
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leads to an enormous simplification in the equations for A, IX, 

and /1 and the corresponding uncertainties . It also makes 

subsequent probability cal culations tractable. This assumption 

will be a.- good approximation if, for example, the anisotropy amplitude 

is smal l and the uncertainties in the Vi's are due to Poisson 

statistics . 

• The next step is to determine the probability of observing 

a distribution that is characterized by A, e<, and f given a 

true distribution that is exactly a first order cosine expansion. 

At this poi nt another approximation is made. It is assumed that the 

relative uncertainties in A are small compared to the relative 

uncertainties in IX or fl . Again this will be a good approximation 

if the anisotropy amplitude is small. 

The fol lowing diagram is a contour map of the relative 

probabil ities of observing 1>< and/ given the corresponding 

parameters c:x
0 

and ;B
0 

of the true di stri buti on. 

t 
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The probability distribution for observing ( <Y,f) is a two-

dimensional Gauss ian centered at ( tY. 'o , ~o) and is a function 

only of the distance from ( CX. 
o' /Jo) . This distance is labelled 

tin the previous figure . From now on it will be assumed that 

the axes have been rotated so that $
0 

= O. Thus C\, i~· propor~tQn(l,l 

to the anisotropy amplitude . 
The measured anisotropy amplitude is proportional to the distance 

~. 
to the origin ( labelled f in the previous diagram) so the probability 

of observing an anisotropy ampli tude is simply related to the 

probability of r. Thus the probability of observing any anisotropy 

amplitude given a true distribution completely characterized by 

A, A1 , and q>can be calculated . 

The anisotropy amplitudes are divided by a scale factor z defined 

by: 
z = 1-J (2/s) 112 tr/A where w = (,r/s)/sin( ;T/s) 

s = number of sectors 

'J"= uncertainties in Yi 1 s 

A = average number of counts/sector 

z is roughly the anisotropy amplitude expected if the true distribution 

is isotropic. w is a smoothing factor that corrects for the fact 

that sampling finite angle bins reduces the measured anisotropy 

amplitude. For 8 sectors and Poisson uncertainties 

z = 1.45l N-112 where N is the total number of counts 

Let r = &' /z observed 

and x = &"tru/z 

Then 
P( r I x) = 
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Some of the properties of this distribution are displayed in 

Figure l The solid line shows the most probable v~lue of r as a 

function of x. Also shown are the 68.2% and 95 .4% confidence intervals. 

There is a 68. 2% probability that an observed r will be within the 

68.2% confidence interval . Furthermore the interval is chosen to 

minimize its length . 

Now making an assumption for the apriori likelihood of a given 

anisotropy amplitude and applying Bayes' Theorem, one can compute 

the probability that the true distribution is characterized by-. a 

given anisotropy amplitude if one measures a particu lar anisotropy 

amplutude . Unless otherwise stated all amplitudes are assumed 

equally likely apriori. 

The results of this derivation are presented in the next 

section. 
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RESULTS 

These results are only valid for anisotropy amplitudes much less 

than one and uncertainties in the count rates in all sectors roughly 

equal. 

As discussed in the last section and shown in the Appendix 

the anisotropy amplitude and direction can be computed from the 

observed Vi's by fitting the funcitonal form: 

A +ucos ei + f sin 9i 

I/, 

and setting A
1 

= ( {Y 
7
'" + f '2.) ,. and ·1) = tan - l ( / / c.( ) 

Using the approximation that all t he uncertainties in the Y. 's 
l 

are equal, the best fit is made in the least squares sense 

when 

A = (1/s)E. Yi 

ex = (2/s) .z.Yi cos 

wheres i s the number of sectors 

e. 
l 

The anisotropy amplitude is given by 

& = w (A,JA) 

where w is the smoothing factor defined in the previous section. 

Again we define the scaling factor z 

z = w (2/s) l/2 CT /A 

and r = do1,/z 

x = ~ru/z 

z is approximately the anisotropy amplitude expected if the true 

distribution is isotropic. 
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Now the probability of x given the observation r is 
2 2 

P(x Ir) = (2/!7) 112e-r 14 e-x 12 I
0

(xr) / I
0
(r2/4) 

where I0 is the zero order modified Bessel function . 

This probability distribution is plotted for r = O, 2, and 3 

in Figure 2 . Figure 3 is a plot of the mode and 68.2% and 

95.4% confidence intervals for this distribution . 

As mentioned above z is approximately the anisotropy 

due to the noise on the measurement. If the measured anisotropy 

ampl itude if much larger than z ( that is, when r is much larger 

than one), z becomes the sigma for the true anisotropy 

distribution. In the other limit, as the measur.ed anisotropy 

becomes much smaller than z ( r nearly zero) , the most likely 

true anisotrppy is zero and the distribution becomes a one-

sided Gaussian. In fact, for all values of r less than the 

square root of 2 the mostly likely value of the true anisotropy 

is zero. 

Figure 4 is a pl ot of the relative accuracy of a measurement 

as a function of the total number of counts ( assuming Poisson 
s 

statistics). The relative accuracy i f defined as the length of 

the 68. 2% confidence interval divided by the most probable anisotropy 

amplitude. The uppermost line shows how many counts are required 

so that the 68.2% confidence interval is only 10% of the most probable 

anisotropy. Also shown is the 60% accuracy line . The bottom line 

shows where the most probable value i s zero, below which only upper 

limits can be placed on the value of the true anisotropy. 
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Thus far we have assumed that all anisotropy amplitudes are 

equally likely apriori . Other assumptions are possible. For exampl e, 

one might assume that all values of (x.. and fare apriori equal ly 

likely This corresponds to assuming that the apriori probability 

of an anisotropy amplitude is proportional to the amplitude. 

This assumption has the result that the probability di stri but ion 

for an anisotropy amplitude given a true distribtuion is the same 

as that for the true distribution given an observation . Thus 

Figure l does double duty. 

Calculations similar to those described above can be made 

for the propagation of errors in the detennin~tion of A and ¢. 

The standard deviation in A is o;/4~ . The standard deviation 

in ~ has been determined in the limit of larger: 

~ Us /4, 



( ( 

0 
IJ 

,.J 

w 

X 

.t: 

V\ 

K"'E 

w 

10 X 10 TO THE CENTIMETER 
t<EUFFEL & ESSER CO. MA0£ Hi' U.S.A.. 

r 
-f ~ 

: ___ ------ -----.~ .. 

18 X 25 CM. ( 46 1523 ( 

(l'\ ✓ 

:+:Ef:~;t 

( 

·-,-~-r.-~ 

= • ; :--1 q-:::::p_a ~' --

~ 

;;::::: 

- --- - - --~ 

ti 
,:.,., 
,: 
"'I 

ti) 

~ 



7 

~ 

CV') 
N 

'I-

LO .3 ..... 

'° ._,. 
l. 

,s 

• I -~ "7 

Q.. 

:,-

<+ 

._, 3 

-i. J. 
u 
~ •. . !.' 
>< 
~ 

0: -,I ,o l -
w "l 

l;j; 
:a ., 
.: ; 
Z · wO 
uU ,. 
wffi ~m 't 
Oct1 
1-- ..J 3 
elt 
xiii 
::?ii: 2. 

~ 
~ 

•. s 

O C>I -

...... 

-

f- I oW' ~ 2.. 
Urttilll.lillllllllli.Ullil· "1:E· i:!.lr .wm.u~OOl.ml+l:Utt.w:~-1-1-U-l:fffl~I ~; • 

~ 

0 

- ii l 
2 

. ~ 
I 

3 

·1 

• 1 ! . 
·, 

I 

I 
J 
I 
1.-
l 
I 
I 

t 
➔ 

t-: 

1 



I 

b 

rt i:t 

,, 

4-
l. ~ 

1d Jrn;i '-' ' 11J1 4n • 

t1 
~i 

!1 

2. 

j.J 

:tt: 
. 

ttt 
1 1ll -~J 

~ 
ff, ,r J , 

• ;lJ t .-. ;.;. :Hl ~ ftt f L 

I1 IJfl 
1
~ 'L:1t · :it1 i ~ '1# 'lI.E_ 

!.l. 3 'I 
s-

r 

II 

... 
±l 

c;;; ::ti 

.c 

'-1/,7/-, s
~ l!W • 

#l 
r. 

r.ff 

;t 

E 



:r-, 
2... 
0 

_, 
JO 

-1. 
Io 

.............. 

t! • 

ttttt ...... 

IO,. 

'.f 

. i 
I 
I 
I 

1. 

/0 
S" 

/0 9 

r 4 

. :r:-
1 ' 

F 



I 
• 1 : 

I ,,. •• • I 

~ 

.. 

• ·_ 1 ·:~~.so+r.>pj 

Ao.;. ~J:ti-1..t " ' 
' ! ' . • ·:1·. • ' 

. . :· .- '. ' • ' . . ' 

Do . s~-e .. ~ t': <;..cis l 11 <!. 
•. .. ' . ; . I 

;'<>' f G. n. :; I,.,..,.., 
I 

D <.>..-t}A~ I 

(X -=' "A \ CC>S . ·t.t> 
t, :::. , ~ I ~Iii) ,(bi . 

.So .A,: .:::. ✓1><~~,.., 

Ec..c."' ~~:i:ov-' c1los~vet VI. 

Assume. • ~a.lk · Y L ~ 
w, +-~ i+ -

New 
I 

c:.a.,v1." t .s 

fl-~ 'z t (-·· ~{Bi,)] 2. 

~ s 

! : 

A>'.\P~~t•,•rjtr"('s - w . A\ /A 

p,~,~ <t> - : f:.Ayi- t ( /1/()1_) 

J. 

;---• 



,,,,,,,..... 

: ... ' 
I 

I"'. 

.. 
' ·' ' 

o(~+--, m I'll<;: . 0. V\ 
po.-Ya ..,. -~ ks 

I 

j 

'J • . 3 
. ~T'-r-Jo-.:. . .. : T.e.chu'l .1ltG .. fc;) 

: c-f. _ 'ma.>'11: v ·~,_.\._t..,l~s 

• 'z\ "::: & ( 1( I) )(~ J . ... ) 

4. ir,t t z er;; kt~J 
i 
~ 0-'J~~~ • : + lu ~ ~ b W t.J-r l S I t 
. o l'\.J . +l.~+ +t~ ; 1-)lo ~ -t- I° ro k, ,, LI e. 

. €~ . -- 'f·· :::, . .l,$ - j ~•~ b j 

\1 =; £( t, ) t >' .. ) 

+k-e. ! ' W\.R-4,ll'\ 

~- .. ; .. 

Th~ ~~~:,·,uc 
cc.\ c.u l c,:·h·~ 5 

' ~ ) n ce . ' :( "Y' 

w, \\ ' j'\<J+ , , ... tr.i 
-. a . . -+ nAe. 

L,Y\ 

x~ QA~ u.V1Ct;;Yr<?.1L,: ,J 
vc,(1Ae 

t ·( v.~) ...;.... ' O 
- I s >o 

H~(?,v~ .. ; . CT~ 
U ~ H\ _$ .Q:\ooV·e. 

, ' 
'A ' '·, ·l ' s 

•. ,~~~')( '· 

! 

.I 0--0<. : .&;a = 0- -j;;, /,s t 

.cr; __ -:-= • - a-/rr 

. i 



... L . : 
\ 

! ,, \ • . 

• ·frr~ 
·.: ., f: 

.f'oY n'\ : 

w -e. 

.. LP.-~~ . A0 i... \ -~ ~tQ C9~ ~ ,/ 

a. 

' Lcz_'r +k ;nu~.~ - . !o-f co1,1~+~ C\___ ,S'~.:tv.r € c.,y--

A i-t \~}t_~ te ~-
I YI. 

4'h\S ; dt:~ t, ',lo 1/~\(,V\ : lo~ N~ 
0 ' •• ~ / L-· 

. ~ so~r,l.e : (o-f +~~~ ; 
'.{"" <-Y' ' -s~.c.,-\,av t.: 

0 f,~ _iv, -l i,. -h"\\ ~ ,_~JJs 
VJ 1+\.._ : l,01 C "2.#+c, l>I ty 

; . ~.(\YI-:'.<, • . , ... ~c i i,j . . . : . 
• i.i.j_ :__ :,,(. ~ N. 

\Ji ; "-a 

~o . : (f'"~i. ::: . ~L 

:MO) ~ .'L .. atfr~~ . (Vi..) . 0-( ;: V

q-.,,.,.-,1,<,,fta • '. fX ,· a J : jd 
I . 

' ' 

LXV'. ~_½~ nt cos ~1.. :-tz:'. (~t cos.$'-

.:~ i-~tl + ··-(~~-

... ~ ·- ~~ + O<'o ; 
; ' 

-S tlm ,\c~•I~ 

f'Y\ ·-_ tz tj(.. s,Y\ e'-

Q.Yf.!. ; ,~~+ 'f' fJf ,·< 

- tXc; ff;n -
- 0 

' ' 

i 

Also 1 ·= A(.> L V:A == a-lrs ..,, 

a- ✓o/s' - ~~ 



.!. 
I• · • I 

,, 

. I 

P(t.;'e;t)= . .,- ~ -f'·- ';lr,(0 cos e + x-,'") /2 
. . / ,, '?-!\ 

Tb.-:i. i.s :fV"olo~t,;t,f'1 . +ka+ a_ ~ an,ple. o{1~-L .. , k._. t 1<i"1 

: ~-lo\ . b ;. Ch."1-c..:::...f~.-,z~ef . bj r ,A1r1 . 
::,,~ : -tl.a+ +~l;t(!, oli-s+,;.,.\.,flllll\ h<-.S C~Cll'<tC.f<> v 1 ,1 h· x~)~ 

I 

Th C + - ~ ) t I,\ is i .s 

. . . • p(lr;·A~ j _Y0 ~ ~o) 

' ·· 



' 
~cM {?~'j ~ ~1 

. lko"~ 

' • ' 

ic~s ~o,:·_bt ~)\)_ 
P ( t1 ; A_d . I "1:;~ii) __ 

P(X0 ,>\0J P(r,Ai, .¥~,l Ab~ 

· .P ('x~:,I\.,) PC rJ.,. l ><~,1 AC>1) 

-t"Ai>-AJ/20:~ e. ~~ 

,J.,..l\ er;." -
I 

f 

I 
I -s-

"" ' .l . 

We:., v.., I-\ )\CA,\) . y ~.Jc. +-e 
' i 

' 

. ' 

Yo - :;_, ·-: ': f; ·JT;: . 
·: . W ' r:r 

, ' ] 

~! -. • f 1.', 1 :(· 

I , ,: • • :•'.r ./ ,r .... 
·r _·= ,J _x _~~:a. 

• I . . 

j ' 

i-
'. 



. . 
iT.,.v.e OY\\St.>+"'-fj 

.3, - ')(J wo
o ... · . -x;- \J S/2_ . 

P~1J _; S\>(1<'0 ji~~) ,, _P(A6) dA0 

I .. 

rk 

~ ff""'x ~.W.:le p(A.,) .:.,s ~~He. .f ~ri:,h ,"' a+ 
. i 

:s~ k. ... :· s, "i~ .(..,.,,.. '. • VOv • e>+ I •·'i ,~ P(A.J ..... ; rrio . ~ 
.s-ci.1~ ; s,·z.e f'v,,, vc .... ~,~~ 1 '"' P(x-j- ·i , 

' 
A, c'-':011 ~ ~V') Av d-{ 

I 

.So 

i 

,~..t~ :_.~ . c°\v"'&~ . I>\ 

A Xo . =· : ~o /wv;: 
. .. l ~ ..... 

T 
I 

. L 
C4.ff yO't,,\tt..<t\,·-II V~ f\. of ~y-

; ' ; 

! 

' i 
,· . 

4 r i 
i 

'·. ,,. 

! . ' 
. I 



,,..., 

l'"'"· 

o~ .(, ..,~ 
z!- - w er' 

A I -J~1:i' 

O."'-J. 

N ~") = P C )(() C, ¼-) ~>6' ~ '1 .1 "G- c~ LP-c4,i~yz 

d. .. ,.A-X.J.,.-6~ 



-= 01/n er½ 

EaC~½) 

7/7 



h a.v e_ 

( . l4.- yl> _ ,, (.,; 

f(e) ~ ~LI +~Jfeos6] ( 

P(e) = 

p(e) 

.-.n:r ~"'";'- ~- ~ -.:k 

fA ~ ½. 
V -_ 1<, c.os e 

-;--~ 

e,.,~..-( @ e)-::::0 



\I 
q,, l = . Al) :+ lX ca s ~ L + I s )'II e ~ 

fA~= -~ [-YL 'f- <f(GL)]~ 

.-;::_ z G- ·~L-+ Aot; [)<'C.c.H: et +f?~)·Y1 e\) ?_ 

O == ~ f,'~ = +'£/-}' +A O -t-t>< <.os Gt. +/? s: >',;, 91..) 
a Ao ' L 

-5' ,' 11 

= - ;). ~ Yi. -t d 1CS 0 0 + ~ ~ Z:-ct>~ f:Jc . + '). f £ 9a's 9 '-
== - .}. S: Y L + ;,) $ Au 

A0 == +~ Yi 

.., 

c) IX 
~ ?, c.o~ ei. ( - y L + AO -I ex c~ el. + f 's; > f) e I., I 



- l\ 0-4.j s 
S-4 ' -:2. 

:::: ~ o-2/s 

~ 

----

,,....,, 



z3w, c\d ~ \Jv-e \) bo·f' N-e•.N 1-k ..... r ,; k I , :. Ccv, f 

'.J,. <.:::;\,.__a f°nl o ,, 't- 8.::. r "~-I ~ ~0\'I'\,:. Sn~ /-1 ~ r•, Val IT 

Nc.,.Jto .,,J:c. ,:J"t M"·Hamd•~ .. I "K~cf-,:,., -----

fl 710 6,618 I . 

C 


