ROTATION MATRICES

T.L. Garrard

Internal Report \#71

5-11-79

Consider 2 coordinate systems:
s : axes x, y, z (For example, HEAO spacecraft coordinates)
G: axes E, N, V (For example, a zenith-azimuth system referenced to earth where $E=$ east, $N=$ north, $V=$ vertical)

Unit vectors represented by \mathbb{e}_{x}, © © $_{y}$,
Vectors represented by column notation, i.e.,
$\overrightarrow{R_{S}}=R_{x} \Theta_{x}+R_{y} \oplus_{y}+R_{z}{ }_{z}=\left(\begin{array}{l}R_{x} \\ R_{y} \\ R_{z}\end{array}\right)=(\vec{R})_{s}$
The subscript (s, G) on the vector specifies the coordinate system in which the components are given. Coordinate system representations are transformed by an orthonormal rotation matrix, $\overline{\bar{A}}$

$$
\begin{aligned}
\overrightarrow{R_{g}} & =\overline{\bar{A}} \overrightarrow{R_{S}} \\
\left(\begin{array}{l}
R_{E} \\
R_{N} \\
R_{V}
\end{array}\right) & =\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)\left(\begin{array}{l}
R_{x} \\
R_{y} \\
R_{z}
\end{array}\right)
\end{aligned}
$$

Some relevant properties of rotation matrices are:

$$
\begin{array}{rlrl}
\overline{\bar{A}}-1 & \overline{\overline{A t}} & & \text { (inverse of } \overline{\bar{A}}=\text { transpose of } \overline{\bar{A}}) \\
A_{i j} A_{i k} & =\delta j k \quad & \text { (using summation convention for } i \text {) } \\
& =A_{k i} A_{j i} &
\end{array}
$$

Note also that

$$
\left(e_{x}\right)_{G}=\overline{\bar{A}}\left(e_{x}\right)_{s}=\overline{\bar{A}}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)_{S}=\left(\begin{array}{l}
A_{11} \\
A_{21} \\
A_{31}
\end{array}\right)_{G}
$$

Thus we write

$$
\overline{\bar{A}}=\left(\left(e_{x}\right)_{G} \quad\left(e_{y}\right)_{G} \quad\left(e_{z}\right)_{G}\right)
$$

Similarly $\overline{\bar{A}}=$

$$
\frac{\frac{{ }^{\oplus} E_{S}}{\frac{{ }_{S}}{\Theta_{S}}}}{\frac{{ }_{S}}{}}
$$

Note that

$$
\mathbb{C}_{E} \cdot \mathbb{e}_{X}={ }^{\mathbb{Q}_{E}} \cdot\left({ }_{\mathbb{Q}_{X}}\right)_{G}=A_{11}, \text { etc. }
$$

So that we may write

$$
\widetilde{\bar{A}}=\left(\begin{array}{ccc}
\oplus_{x} \cdot e_{E} & \oplus_{y} \cdot e_{E} & e_{z} \cdot e_{E} \\
\oplus_{x} \cdot e_{N} & e_{y} \cdot e_{N} & e_{z} \cdot e_{N} \\
{ }_{x} \cdot e_{V} & e_{y} \cdot e_{V} & e_{z} \cdot e_{V}
\end{array}\right)
$$

Since, for example,

$$
e_{x}=e_{y} \times e_{z}
$$

we can find the third row of any rotation matrix in terms of the other two.

Continuing the example.

$$
\begin{aligned}
& \left(\begin{array}{l}
A_{11} \\
A_{21} \\
A_{31}
\end{array}\right)=\left(\begin{array}{l}
A_{12} \\
A_{22} \\
A_{32}
\end{array}\right) \times\left(\begin{array}{l}
A_{13} \\
A_{23} \\
A_{33}
\end{array}\right) \\
& A_{11}=A_{22} A_{33}-A_{32} A_{23} \\
& A_{21}=A_{32} A_{13}-A_{12} A_{33} \\
& A_{31}=A_{12} A_{23}-A_{22} A_{13}
\end{aligned}
$$

or

Finally note that any rotation matrix may be represented by 3 Euler angles θ, ϕ, ψ as illustrated on $p .107$ of Goldstein's Classical Mechanics.
$\overline{\bar{A}}=\left(\begin{array}{ccc}\mathrm{C} \psi \mathrm{C} \phi-\mathrm{C} \theta \mathbf{S} \phi S \psi & \mathrm{C} \psi \mathrm{S} \phi+\mathrm{C} \theta \mathrm{C} \phi \mathrm{S} \psi & \mathrm{S} \psi \mathrm{S} \theta \\ -\mathrm{S} \psi \mathrm{C} \phi-\mathrm{C} \phi \mathrm{S} \phi \mathrm{C} \psi & -\mathrm{S} \psi \mathrm{S} \phi+\mathrm{C} \theta \mathrm{C} \phi \mathrm{C} \psi & \mathrm{C} \psi \mathrm{S} \theta \\ \mathrm{s} \theta \mathrm{S} \phi & -\mathrm{S} \theta \mathrm{C} \phi & \mathrm{c} \theta\end{array}\right)$
where $c \psi$ is shorthand for cosine of ψ, \ldots
We note that $0^{0} \leq \theta \leq 180^{\circ}$ (see the figure), and $\theta=\cos ^{-1}\left(A_{33}\right)$.
Then $\phi=\tan ^{-1}\left(A_{31} /\left(-A_{32}\right)\right)$
and $\quad \psi=\tan ^{-1}\left(A_{13} / A_{23}\right)$
where the quadrants for ϕ and ψ are determined by the signs of the two terms in the argument of the arc tangent (similar to IBM FORTRAN library function ATAN2).

