Internal Report #82
SRL Plotting Procedures

Collins
Don Mitchell
Bric Holstege

Calif Institute of Technology
Pasadena, Ca

ABSTRACT

This document describes the plotting software available on
the FDP 11/70. There is a library of subroutines (i.e. plot(zy),
print("string”), etc.) to be called from user programs. There are
plot output programs for the Calcomp and Versatec plotters and
for the Hewlett-Packard graphics terminals,

Also included are sample plotting programs and their output,
and examples of usage.

A plot muitiplexer exists for accurmulating multiple plots on a
single pass through the data, and the documentation is included
as Appendix A.

This document replaces ""SKL Internal Report §73",

August 27, 1981

Internal Report #82
SRL Plotting Procedures

Nancy Collins
Do Mitchell
Bric Holstage

Calif Institute of Technology
Pasadena, Ca

Introduction

The plot software described in this paper allows the user to write
programs that can produce sophisticated plots using a collection of sim-
ple subroutines.

The separation of plotting into two halves - the user program emit-
ting coded plot commands, and the system program reading the com-
mands and making the plot - allows a wide range of freedom for the user.
The intermediate coded commands can be saved in a file for later plot-
ting, or plotted first on an HP graphics terminal and later plotted on the
hardcopy printers if they are correct, or plotted several times without
having to go through the accumulation program again.

Since applications vary so widely, and the library subroutines allow
such flexibility, few high-level routines are part of the system library. (It
was discussed, but deemed impossible to find a “one-routine-does-all”
that anyone could agree on.) Most users write their own plot set-up sub-
routines, constructed out of library subroutines, including their own
preferences for reasonable default values.

1. Library Subroutines

The following subroutines are.called from the user program and
write coded plot instructions on the standard output. The standard out-
put must either be redirected to a file or piped directly into the plot out-
put programn. Any messages intended for the user must be written on
standard error.

To include the routines in user programs, compile them with the -IP
option.

1.1. General Notes

In the following list of subroutines, variables starting with "x" or *'y"”
must be replaced with floating point numbers. Variables starting with
“a" represent integer values.

The C compiler interprets the constant "*10" as in integer value, and
the constant "“10.” as a floating point value. Strange things happen if a
subroutine is passed the wrong type of argument. If you need to change
the type of a variable, see ‘'casts’” in the C manual.

-

- 6]

-2.

Upper case symbols refer to predefined values in the #include file
“plot.h’’. Most library subroutines return the value PLOT_ERKOR on an
error. 4

1.2. Glossary

Screen Coordinates
or
Plotier Coordinates

Integer values which define locations on the physical plotting area.
X coordinates range from O to 2047, Y coordinates range from 0 to
1589. This is the maximum resolution of the device.

Porld Coordinaltes
or ’
{ser Coordinales

Floating point numbers which represent locations on the logical
plotting area, in terms of user-defined values.

Vewport

Subarea of the total plotting screen where plotting may be done.
Labels and headings may be printed outside the viewport, but no
.points or lines will be plotted.

Windowing Transformalion
or
Window

The transformation of points from user coordinates to plotter coor-
dinates. Translation and scaling are done, but no rotation. '

o Wiwdow - - __ . | - m.qr RN LSS Ak Wi
T - e e
0,15.9) T -

: < PLEER _ J R .U,cfgiA_ ("‘f‘,"”')

] Window We

:L e P

T A onstOc mahon

T 2

1 4 P -‘%’co—‘—‘. --’:—,_ '1'\50
og T T T j0.0) e M

User Coovdinate Protter Coordinates

1.3. Subroutines

tnitplot()
Initializes internal variables. (This routine replaces open-
plot()). It sets the default viewport and window to the mmax-
irmum plotting area (0,0,2047,1588).

-3-

endplot()
Flushes buffers, stops plot program from accumulating data,
and causes existing data to be plotted. (Note: the commands
closeplot() and erase() no longer exist.) endplot() resets the
text size to 1, the text direction to 7D_R0 and the line type to
LT_SOLID. 1t does not change any of the other plot settings, so
if the viewport and window are the same, another initplot() is
not necessary for the next plot.

setviewport (azl,ayl,ozh,ayh)
Sets the area available for plotting, in terms of plotter coordi-
nates. The call sefviewport(MAX_ VEM’ORT) sets the viewport
to roughly the maximum plotting area. MAX X_VIEW and
MAX_Y_VIEW are also defined (as 2047 and 1598 respectivly).

setwindow(zl yl,zh,yh)
Defines the user coordinate values of the corners of the
viewport. This defines the transformation of each point from
user to plotter coordinates.

setscreen(zl,yl,zh,yh)
After a viewport and windowing transformation have been
defined (by calling seiviewport() and selwindow()), a new
viewport can be defined in terms of user-coordinates.
seiscreen() uses 4 floating-point user-coordinates and the old
windowing transformation to deﬂne a new viewport.

setextsize(an) '
Sets the text size to an, where an is in the range 1-8. Returns
the old text size.

setextdir(an)

Sets the default text direction, where an is one of: TD_F0, »

TD_R30, TD_R180, TD_K270. Returns the old text direction.
sete::tyust(a.n)
When a string is printed with priné(), the relation of the string
to the current "pen” position is controlled by the text
justification. The text may be centered on the present posi-
tion, or right or left justified. The current plotting routines
ignore vertical (upper or lower) justification and center the
string vertically. an is one of: TW_CL, TJ_CC, TJ_CR for left,
center and right justifications respectivly. 'Returns the old
justification.
setlinetype(an)
Sets the line type, where an is one of LT_SOLID (the default),
LT_DASHED, LT_DOTTED, LT_DOTPLOT. t

t I have never found an occasion when it was necessary to use this routine. nsc
t For making scatterplots, the routines sefltnetype(LT_DOTPLOT), and draw(zy)
can be used (and are faster) then setplotchar(.’) and plot(z,y). See section 3 for

examples.

-

-4-

selplotchar(c)
It ‘c’ is a printing ascii character, all subsequent calls to
plot(z,y) will plot that character. Also available are a set of
special characters (listed below). These characters will be cen-
tered at the plotting location. The subroutine returns the old

plot character.
description =~ | name

plus sign C_PLUS
hollow square C_SQUARE
hollow diamond C_DIAMOND
asterisk CSTAR -
solid circle C_SLD_CIRCLE
hollow circle C_CIRCLE
solid square C_SLD_SQUARE
diagonal cross C_CROSS -
solid diamond C_SLD_DIAMOND

settics (alength,dir) -
Sets the default length and direction of tic marks on the axis.
The symbols SHORT_TICS, MED_TICS and LONG_TICS are defined
to give reasonable lengths. Valid options for direction are IN,
OUT, BOTH, UP, DOWN, LEFT and RIGHT. The defaults are /N and
MED_TICS.

zazis (z,y,length divisions)

yazis (z,y,length, divisions)
Draws an axis starting at z, ¥ and extending length (all in
user-coordinates). divisions is the number of sections the axis
is divided into (an integer value). divisions - 1 tic marks are
actually drawn.

logzaxis(z,y,length,decades)

logyazis(zy,length,decades)
Draws a log axis starting at user-coordinates z, ¥ and extend-
ing length (also in user-coordinates). decades is an integer
value.

label(format)

Uabel (format, which_tics,side)
The short form of label() puts numeric labels on the outer side
of each tic mark on the last axis drawn, where format is the
same as the C routine printf() format strings. The long form,
Uabel(), labels each ‘which_tic’ (i.e. a value of 2 would label
every other tic) and OUT or INfor side.

rawlabel (ap)

rawllabel (ap, which _tics,side)
These routines allow the user to select the strmg to be printed
at each label location. ap is an array of character pointers,
where each points to a null terminated string of less than 18
characters. These strings are printed at the same location reg-
ular labels would be.

title (string)
litle(left center, might dir)
Writes a title for the last axis drawn. The short form centers
the title. The values lor dir are TD_K0, TD_R180 for x axes, and
TD_R90 and TD_R270 for y axes.
hgrid()
vgrid()
: Draws a grid with horizontal (vertical) lines. This routine takes
the spacing of the tics from the last axis drawn vertical (hor-
izontal) direction as the spacing of the lines. The type of line
can be set with setlm.et'ype().
print(string)
Prints the string at the current plot position. The string nmust
be null-terminated and cannot contain newlines.

move(z,y)
Moves the current “'pen” location to user-coordinates z, y.

draw(z,y)
Draws a line of the current line type from present location to
user-coordinates z, y. Returns 1 if endpoint was outside the
viewport. If line type is dot-plot, moves to point z, ¥ and draws
a dot.
plot(zy)
Draws the current plot symbobl at location =z, vy in user-
coordinates. Returns 1 if z, y¥ is outside the viewport.
selerrbars(zleft zright ylower yupper,azlen,aylen)
Sets the size of the error bars to be plotted with ploferr(). The
first 4 lengths are floating-point user-coordinate lengths, and
the last 2 are integer plotter-coordinate lengths which control
the cross bars on the error bars. .
ploterr(z,y)
Same as plot() except error bars are drawn on the symbol or
character. The lengths are set from the last seterrbars() call.
oul_of_range
Not a subroutine, but a global variable that contains the
number of times a plot(), ploterr(), or draw() endpoint was out-
side the viewport. It is reset by calls to initplot(), endplot(),
and setviewport(), but can be set by the user at any time.

2. Plot Output Programs

2.1. Plot

This is a system program which expects coded plot commands as the
input, either from a file or a pipe. It opens one of the plotters, accurmu-
lates and prints the plot.

“plot” with no options alternately tries to open the Calcomp and
Versatec, making the plot on the first available device. ‘‘plot” uses raw
disk areas to accurmnulate the plot, and waits if one of the four raw areas

is not available.

w é <

-n
-4

The options are:

make the plot program use the Versatec for plotting.

make the plot program use the Calcomp for plotting.

write the plot raster output on standard output instead of
opening a plotter. (Someday may be useful for merging troff or
other output with plot files.)

keep the plotier open between plots. Should only be done after
plot has been accurmilated in a file, and for plots which must
be on consecutive pages, since it ties up the plotter.

causes program to ignore control-C’s.

shrinks each plot to one quarter of its original size and prints
four plots per page.

2.2. Hpplot

This program needs to be run from an HP graphics terminal,‘ or else

you must log in on an HP, and then from another terminal redirect the
standard output from your plotting program to that device. (Do a “who
am i” on the HP to find out the name of the terminal, and the device will
be */dev/ttyz” where "z’ is the appropriate letter).

“hpplot” puts the HP in graphics mode and draws the plot as it
. reads the commands. When it is done with one plot (when it sees an

“endplot()’), it beeps and waits for you to type any character on the HP
keyboard. H there are more plots, it starts the next one, or else it resets
the terminal back to its original mode.”

3. Examples

3.1. A Scatter Plot

#include <plot.h> /* the plot header file */

#include <stdio.h> /* the standard i/o package */

;nm‘n()
int i;
foat x, y;
char buffer[81], heading[50];
initplot(); /* initialize and begin */
setviewport(115, 115, 2015, 1445); ° /* leave some space for labels */
setwindow(0.0, 0.0, 10.0, 10.0); /* plot is scaled from 0-10 */
xaxis(0.0, 0.0, 10.0, 5); /* start at (0,0), 10 units long, 5 tics */
label("%g"); /* this format omits unneeded zeros */
title ("X axis"'); /* default is centered */
yaxiz(0.0, 0.0, 10.0, 10); /* start at (0,0), 10 units long, 10 tics */
label("%g"); /* see the C manual for other formats */

ltitle(" "',"Y axis","no units",TD_R90); /* no lower title, rotated 80° */
setlinetype(LT.DOTTED); /* used dotted lines for gridding */

herid();
vgrid();
setlinetype (LT _SOLID);
xaxis(0.0, 10.0, 10.0, 1);
yaxis(10.0, 0.0, 10.0, 1);
setlinetype(LT _DOTPLOT);
for(i=0; i<1000; i++) §
x = rand() / 32787. * 10;
y = rand() / 32767. * 10;
draw(x,y):

setlinetype(LT_SOLID);
setplotchar('x');
l‘or?i:D; i<20; i++) §
x = rand() / 32767. * 10;
y = rand() / 32767. * 10;

plot(x,y);

setextjust{TJ_CC);
setextsize(2);

move(5.0, 10.5);
tprintf(stderr,"Input title: ");

gets(heading);

-7-

/* horizontal grid */

/* vertical grid */

/* back to default */

/* close ofl top of box */

/* close off side - no tics */

/* scatter plot */

/* generate 1000 random sets of points */
/* between 0 and 10 */

/* if linetype is dotplot, a draw makes
/* a dot at the endpoint */

/* back to regular plot */

/* will use 'x' for character to piot */
/* plot 20 random points */

/* plot point */

/* center text strings */

/* make text size larger */

/* move pen */

/* messages to the user must ,
use stderr - not just printf() */

/* get a string from standard input */

sprintf(buffer,"Ex. 1: %s ", heading); /* see C manual for

print(buffer);
endplot();

3

32. AlLog Plot

#include <plot.h>

;m.in()
long x;
float y;
extern double log();

double log10 = log(10.);

initplot();
setviewport(115,115,2015,1445);
setwindow(0.0,~1.0,200.0,5.0);
xaxis(0.0,-1.0,200.0,5);
label("%Zg");
logyaxis(0.0,-1.0,6.0,8);
setextdir(TD_R80);
label("10e%Zg"); -

title("Ex. 2: Log Plot 1");

more explanation of sprintf() */
/* this is the plot routine */
/* careful of print() and printf() */
/* and no newline in string to be printed */
/* flushes buffers, stops accumulation */

/* the plot header file */

/* library subroutines must be declared */
/* if they return non-integer values */
/* save this as a constant */

/* initialize and begin */

/* actual area for plotting */
/* semi-log plot */

/* this is the linear axis */

/* use log values for axis */

/* set direction for labels */

/* this makes good log labels */
/* just 1 centered title */

move(0.0,0.0);
for(x=0,x<200,x+=10) {
y=X*x+X
y = log(y) / log10;
draw((foat)x, y);

endplot();
xaxis(0.0,~1.0,200.0,5);

label("%g");
logyaxis(0.0,-1.0,8.0,8);
setextdir(TD_R90);
label("10e%g");

title("Ex. 2: Log Plot 2");
setplotchar(C_SLD_CIRCLE);

seterrbars(0.0,0.0,0.15,0.15,8,8);

move(0.0,0.0);
for(x=0;x<200;x+=10) {
yEX*X +X
y = log(y) / log10;
draw((float)x, y);
ploterr{(ficat)x, y);

endplot();

3.3. Multiple Plots on a Page

#include <plot.h>
#define MAX 80

main()

¢

int i, lasti, bin[MAX+1];
float x, mid, gauss();

for(i=0;i<1000;i++) §
do §
x = gauss();
x = (x+5) * 8;
{ while Sx(O || x>80);
bin[(int)x] ++;

initplot();

setviewport(200,120,950,1480);
setwindow(0.0,0.0,80.0,100.0);

xaxis(0.0,0.0,60.0,8);
label("%g"); -
title("this is the X axis");
yaxis(0.0,0.0,100.0,5);
label("%g");

title("this is the Y axis");

/* move to origin */

/* draw a curve */
/*y=x"+x*/

/* convert it to base 10 */

/* see casts in the C manual */
/* arguments must be floats */
/* end of plot 1 */

/* same viewport and window */
/* no tnitplot() needed for next plot */

/* use log values for axis */
/* set direction for labels */

© /* this makes good log labels */

/* just 1 centered title */

/* set character to aolid circle */

/* set length of err bars */

/* move to origin */

/* draw a curve */

/*y=x"+x*/

/* convert it to base 10 */

/* see casts in the C manual */

/* draw plot symbol with error bars */

/* end of plot 2 */

/* the plot header flle */

/* maximum number of histogram bins */

/* generate a random distribution */

/* gaussian distribution */

/* spread and center around 30 */
/* try again if out of range */

/* increment the corresponding bin */

/* initialize */
/* about half the page */
/* user coordinates */

setextsize(R);
title("Ex. 8: Gauss 1");
setextsize(1);
xaxis(0.0,100.,0,80.0,8);
yaxis(80.0,0.0,100.0,5);
move(0.0,0.0);
lasti = 0;
for(i=0;i<MAX+1;i+=5) §
mid = (i + lasti) / 2.;
- draw({mid,(ficat)bin(lasti]);
_ draw(mid,(foat)bin[i]);
draw((float)i, (Aoat)bin[i]);
lasti =i;

}
initplot();
setviewport(1260,120,2010,1480);
setwindow(0.0,0.0,60.0,100.0);
xaxis(0.0,0.0,80.0,8);
label("%g");
title("this is the X axis');
yaxis(0.0,0.0,100.0,5);
label("Zg"); :
title("this is the Y axis");
setextsize(2);
title("Ex. 3: Gauss 2");
setextsize(1);
xaxis(0.0,100.0,60.0,8);
yaxis{80.0,0.0,100.0,5);
move(0.0,0.0);
lasti = 0; ,
for(i=0;i<MAX+1;i++) §
mid = (i + lastl) / 2.;
draw({mid, (float)bin[lasti]);
draw(mid,(foat)bin[i]);
draw((float)i, (float)bin[i]);
lasti = i,

: indplot():

float
gauss()

.
’

double u, v, g, t

-9-

/* bigger size */

" /* titles the last axis drawn */
/* back to normal */
/* close off box */

/* go to origin */

/* do every 5th bin */
/* get midpoint */

/* horizontal line */

/* vertical line */

/* horizontal again */
/" save for next time */

/* reinitialize with no page teed */
/* second half of page */
/* user coordinates */

/* this has to be a floating format */

/* bigger size */

/* titles the last axis drawn */
/* back to normal */

/* close off box */

/* go to origin */

' /* do every bin this time */

/* get midpoint */

/* horizontal line */

/* vertical line */

/* horizontal again */
/* save for next time */

extern double log(), sqrt(), ranf();

do {
u = 2.*ranf()-1.;
v = 2.%ranf()-1.;
8 = u*u + v,
] while (s >=1.);
t =-2.*og(s)/s;
= sqrt(t);
return(u*t);

/* v*t is also gaussian */

-10-

3.4. Compiling a User Program

‘3 cc yourprog.c -IP -o yourprog
(compiles your program with library “P” and puts the output in “yourprog’’)

3.5. Running the Program

$ yourprog | plot .
(sends your output directly to the first available plotter)

$ yourprog | plot -4
{prints four plots per page)

$ yourprog > savfll
{saves your output in “savfll” and does no plotting)

$ plot -c4 < savill
(plots the already created output on the Calcomp, four to a page)

$ yourprog | tee savfll | plot
(saves a copy of the output in “‘savfil” and
also ssnds a copy to be plotted) .

$ yourprog | hpplot)
(if the terminal is a Hewlett-Packard, clears
the screen and draws the plot in graphics mode)

$ yourprog | hpplot > /dev/ttym
(you must have logged in on “ttym'" - it must be an HP - and
then you can run this from any terminal)

$ yourprog | tee savfll | hpplot
{prints on the HP as the plot is accumulating, and also saves a
copy in *‘savfll” for later hardcopy printing)

1: Scatter Plot

Ex.

Dt

=11~

%01

1 iy By g o

{1

2
’ ' » . .
<+ A . o
- “ : . . 7
3 . -
1 .
] m .
= N '. ' .
e - -
Ct e i T .
. . E| " -
. . -.
: . — - Je
. R E . 1 .
. : el , 4L . - L
I) . x|
o \
. . ' i "ee I I
- . '.. , * . .
» . AL .)
[| K
. .
. N °
L 3 - ~ - (] L 4
_Han ey CTT WY

L
L

— L i ol Py
8 | ?] e
-~ mE. L By 83 BIUY

T2 ssTWg ig °X3

Tt L] t 1 8
L 43
L 4@
L 4R
5 l 18
- 12

—d. A e L 'S
2 8 ¢ 8 °

8
LU PR TN T

[ssneg g °X3

Y
10

[y 3 i) I 4 -

Lo ™l ™0 (L] (o] 1

t Wy B g

this 10 the X axie

thie s the X anis

Lo e
v

Appendix A:
Plot Multiplexing

Don Mitchell

Calif Institute of Technology
~ Pasadena, Ca

ABSTRACT

Multiplexing plots allows a program to accumulate many
separate plots during a single pass through the data. All plots
should have the same windowing transformation (same viewport
and same window), since these routines simply mark the output
stream for later separation; no variables are saved or calculations
are done.

1. Introduction

Multiplexing plots allows the user to accurnulate and print up to 256
plots during one pass through the data. This is especially useful for
sequential-access devices such as magnetic tape, where the rewind and
rereading time are substantial.

The multiplexing fits well into the existing plot package. Even
though many plots may be accumulated at one time, there is still only
one output stream containing all the information. The multiplexing rou-
tines insert extra characters into the stream for each plot channel
change. The output stream must be piped into a demultiplexer which
separates the output and feeds the plot program with normal plot input.

There are several things to be aware of when multiplexing plots. The
scaling of all points is done in the user program by the library subrou-
tines, and several global variables are saved by the routines. When
changing plots, none of those variables or the windowing transform are
changed. If all plots have the same window and viewport, points can be
generated interchangeably and printed on different plots. If the scaling
is not the same on all plots, everything must be reinitialized when
changing plot channels (the window, viewport, linetype, textsize, etc).
For moving and drawing lines, the last position of the “pen" is saved. If
you move to a position but then change plot channel, that position will
not be saved for the next time you change back to that plot. To draw
continuous lines on separate plots, the user must save the position of
the pen on that particular plot himself, and move there before he draws

the line.

2. Library Subroutines
There are two new plot library subroutines to be called from the
user program as the plots are being generated. They are in the standard
plot Ibrary (-IP) and function in the same manner as all the other
librar routines.
channel(an)
Directs the plot output stream to channel an, where an is in
the range 0-255. All subsequent output will go to this channel
until the next channel() call. Each separate plot should be col-
lected on a different channel.
broadoast (an,am) :
’ This allows the output stream to be duplicated on a range of
channels, instead of just one. The regular plot output will be
duplicated on channels an through am inclusive until chan-
nel() or broadcast() is called again.

3. Deimux Program

The coded plot commands (the standard output from the user plot
routines) must be piped through the program ‘‘demuz’” before they are
sent to “plot” for plotting. ‘“demuz" is the plot demultiplexer - it sorts
out the stream of plot commands and prints each plot sequentially.
“demuiz’’ reads standard input and writes on standard output, so input
should be piped or redirected from a flle. The output can be piped to
“plot” directly or saved in another file for later plotting.

4. Exnmples

4.1. A Plot Program

#include <plot.h>
#include <stdio.h>

;nain()
inti, p;
char buf[20];
fivat x,y;

initplot(); /* initialize */
sctviewport(150,150,1800,1400); /* all should have same viewport */
seAwindow(0.0,0.0,100.0,500.0); /* and same window */

broadcast(0,2); /* send this to all 3 channels */
xnxis(0.0,0.0,100.0,10); /* draw an axis */

label("%Zg"); /* label tic marks */

ti le("percentage'); /* title the axis */
yxis(0.0,0.0,500.0,5); /* draw y axis */

label("%g"); /* label tic marks */

ti le("counts"); /* title y axis */

xiwdis(0.0,600.0,100.0, 1;;
yiuxis(100.0,0.0,500.0,1
sctextjust(TJ_CC);

/* no tic marks */
/* close off box */
/* center printing */

setextsize(2);
setlinetype(TL_DOTPLOT);

for{(p=0;p<3;p++) §
channel(p); -
move(50.0,550.0);
sprintf(but,"Plot #%d", 1);
print(buf);

for(i=0;i<3000;i++) §
p = rand()/32768, * 3;
channel(p);
x = rand()/32767. * 100.;
y = rand()/32767. * 500.;

draw(x,y);

J
broadcast(0,2);
endplot();

2. Running the program

$ yourprog | demux | plot

$ yourprog > savefile
$ demux < saveflle | plot

8 demux < savefile > saveﬁleZ
$ plot < savefile2

/* big for heading */
/* all will be scatteplots */

/* change plots */

/* move up for title */

/* make unique labels */

/" label each plot with it's number */
/* gelect a random channel */
/*random x and y */

/* plot a random point */

/* all channels */
/* must be called for each plot */

. .
” .
-
[’
. -

1% 3o1d

.
a . -
ee oL .
. . Al
. ’

0% 3old

