
, , r ..

Intem.al Report #82
SRL Plotting Procedures

Nancy Collins
DanMUcheU
FJrl.c Holstege

Calif Institute of Technology
Pasadena.Ca

ABSTRACT

This docWill!nt describes tb.e plotting software , available on
the PDP 11/70. There is a library of subroutines (i.e. plot(z,y),
-pri:nt('string"), etc.) to be called from user programs. There are
plot output programs for the Calcomp and Versatec plotters and
for the Hewlett-Packard graphics terminals.

Also included are sample plotting programs and tb.eir output,
and examples of usage.

A plot.. multiplexer exists for' accunmlating multiple plots on a
single pass through the data, and the documentation is included
as Appendix A.

This document replaces "SRL /11,ternaJ. Raparl /73".

August 27. 1981

Introduction

Internal Report #82
SRL Plotting Procedures

Nrmcy Collins
Dan. MUcheU

l!1ril:: Holstege

Calif Institute of Technology
Pasadena, Ca

The plot software described in this paper allows the user to write
programs that can produce sophisticated plots using a collection of sim­
ple subroutines.

The separation of plotting into two halves - the user program emit­
ting coded plot commands, and the system program reading the com­
mands and making the plot - allows a wide range of freedom for the user.
The intermediate coded commands can be saved in a file for later plot­
ting, or plotted first on an HP graphics terminal and later plotted on the
hardcopy printers if they are correct. or plotted several times without
having to go through the accumulation program again.

Since applications vary so widely, and the library subroutines allow
such flexibility, few high-level routines are part of th'e system library. (It
was discussed, but deemed impossible to find a "one-routine-does-all"
that anyone could agree on.) Most users write their own plot set-:up sub­
routines, constructed out of library subroutines, including their own
preferences for reasonable default values.

1. library Subroutines
The f ollo'Wing subroutines are called from the user program and

write coded plot instructions on the standard output .. The standard out­
put must either be redirected to a file or piped directly into the plot out­
put program. Any messages intended for the user must be written on
standard error.

To include the routines in user programs, compile them with the -IP
option.

1.1. General Notes
In the following list of subroutines, variables starting with "x" or "y"

mu.st be replaced with floating point numbers. Variables starting with
"a" represent integer values.

The C compiler interprets the constant "10" as in integer value, and
the constant "10." as a floating point value. Strange things happen if a
subroutine is passed the wrong type of argument. If you need to change
the type of a variable, see "casts" in the C manual.

\

0 .,

-2-

Upper case symbols ref er to predefined values in the #include :file
"plot.h". Most library subroutines return the value PLOT ..ERROR on an
error.

1.2. Glossary

S:reen Coorctin.atas
or
.R,ottBT Coord.~as

Integer values which define locations on the physical plotting area.
X coordinates range from Oto 2047, Y coordinates range from Oto
1599. This is the maYi:mum resolution of the device.

1'brld Coordinates
or
IABT Coordinates

Floating point numbers which represent locations on the logical
plotting area, in terms of user-defined values.

Vi.eu?Port
Subarea of the total plotting screen where plotting may be done.
Labels and headings may be printed outside the viewport, but no

. points or lines will be plotted.

Mndowi.ng 'Pra:nsjorm.ation
or
JKndow

The transformation of points from user coordinates to plotter coor­
dinates. Translation and scaling are done, but no rotation.

('1,0
1

\'S.O)
•- - -

.__._...._...._.._,_ _____
o.o 10,0

1.3. Subroutines

initplot()

·"fo~---_--_ _..,,,...,,...,.....,.,_

0

Initializes internal variables. (This routine replaces open­
plot(}). It sets the default viewport and window to the max­
inrum plotting area (0,0,2047,1599).

-3-

end.plot(}
Flushes buffers, stops plot program from accumulating data,
and causes existing data to be plotted. (~ote: the commands
closeplot() and erase() no longer exist.) end.plot(} resets the
text size to 1, the text direction to TD...RO and the line type to
LT ..SOLID. It does not change any of the other plot settings, so
if the viewport and window are the same, another initplot{} is
not necessary for the next plot.

sef:uiewport (a:zl.,ayl,a.:r:h,a:yh}
Sets the area available for plotting, in terms of plotter coordi­
nates. The call setvi.ewport(M.AX_VJEWPORT) sets the viewport
to roughly the maximum plotting area. MA)(1_VJEW and
MAX_y_J,1.EWare also defined (as 2047 and 1599 respectivly).

setwi:n.dow(:,yl,:di,yh)
Defines the user coordinate values of the corners of the
viewport. This defines the transformation of each point from
user to plotter coordinates.

setscreen(:,yl,:::h,yh)t
Aiter a viewport and windowing transformation have been
defined (by calling sstviewport() and seturi:nd.ow(}), a new
viewport can be defined in terms of user-coordinates.
setscreen() uses 4 floating-point user-coordinates and the old
windowing transformation to define a new viewport.

setextsize (an)
Sets the text size to cin, where an is in the ..range 1-B. Returns
the old text size.

seteztd:i:r(a.n)
Sets the def a ult text direction, where am. is one of: TD-RO,
TD--R90, TD...RJ 80, TD...R270. Returns the old text direction.

sete:tjust(cin)
When a string is printed with pri:n.t(), the relation of the string
to the current "pen" position is controlled by the text
justification. The t'ext may be centered on the present posi­
t.ion, or right or left justified. The current plotting routines
ignore vertical (upper or lower) justification and center the
st.ring vertically. a.n is one of: TJ...EL, TJ...EC, TJ...ER for left,
center and right justifications respectivly. • Returns the old
justification.

setlinetype (an)
Sets the line type, where a.n is one of LT..SOLID (the default),
LT _])ASHED, LT ...D01TED, LT .JJOTPLOT. t

t I have never found an occasion when it was necessary lo use this routine. MC * For making scatterplots. the routines sfl'tl:i:Mtype(LT..DOTPLOT), and dratw(~y)
can be used (and are faster) than Htplotch.a:rf. ') and pl.at(~y). See section 3 for
examples.

\

-4-

setplotcha:r(a)
If 'c' is a printing ascil character, all subsequent calls to
ptot(:c,y} will plot that character. Also available are a set of
special characters (listed below). These characters will be cen­
tered at the plotting location. The subroutine returns the old
plot character.

e
plus sign
hollow square
hollow diamond
asterisk •
solid circle
hollow circle
solid square
diagonal cross
solid diamond

C-PLUS
C...SQUARE
C..l)IAMOND
C...STAR
C...SLD....CIRCLE
C....CIRCLE
C...SLD ..SQUARE
C....CROSS •
C...SLD..DIAMOND

settics(alength,dir) ·
Sets the default length and direction of tic marks on the axis.
The symbols SHORT J1CS, MED.J'JCS and LONG-1'/CS are defined
to give reasonable lengths. Valid options for direction are IN,
OUT, BO111, UP, DOWN, LEFT and RIGHT. The defaults are IN and
JIEDJ1CS.

:m.:,;is(:r:,y ,length,divisions)
yazi.s(:z:,y;Length,divisi.ans)

1
Draws an axis starting at :c, y and extendirig Length (all in
user-coordinates). divisions is the number of sections the axis
is divided into (an integer value). divisions - 1 tic marks are
actually drawn.

logxazi.s (z,y ,Length, decades)
logya:r:is(z,y,length,decades}

Draws a log axis starting at user-coordinates :c, y and extend­
ing length (also in user-coordinates). deca.cles· is an integer
value.

Label{JrrrmaJ:)
ltabel {format, whichJics,sid.e)

The short form of ta.bet() puts numeric labels on the outer side
of each tic mark on the last axis drawn, where format is the
same as the C routine pri'Tlif (} format strings. The long form.
Uabel(}, labels each 'which.Jic • (i.e. a value of. 2 would label
every other tic) and OUT or /Nfor side.

ra:wla.bel (ap)
ra.wll.abel(a.p, whichJics,sid.e)

\

These routines allow the user to select the string to be printed
at each label location. a.p is an array of character pointers,
where each points to a null terminated string of less than 16
characters. These strings are printed at the same location reg­
ular labels would be.

-5-

titl.fl (stmg)
ltitle{left,center,right,di:r)

hgrid.O
vgrid()

Writes a title for the last axis drawn. The short form centers
the title. The values for dir are TD..RO, TD..Rl 80 for x axes, and
TD-R90 and TD...R270 for y axes.

Draws a grid with horizontal (vertical) lines. This routine takes
the spacing of the tics from the last axis drawn vertical (hor­
izontal) ctirection as the spacing of the lines. The type of line
can be set with setLinetype(). •

prin.t(stri:n,g}
Prints the string at the current plot position. The string must
be null-terminated and cannot contain newlines.

move(:z:,y)
Moves the current "pen" location to user-coordinates :z:, y.

d:ra:w(a:,y}

pLot(:z:,y)

Draws a line of the current line type from present location to
user-coordinates :,;, y. Returns 1 if endpoint was outside the
vi.ewport. If line type is dot-plot, moves to point :z:, y and draws
a dot.

Draws the current plot symbol at location :z:, y in user­
coordinates. Returns 1 if :,;, y is outside the yiewport.

seterrba:rs{:z:Left,:::right,yloVJer,ywpper,ct:,;lm.,aylen)
Sets the size of the error bars to be plotted with pLoterr(). The
first 4 lengths are floating-point user-coordinate lengths, and
the last 2 are integer plotter-coordinate lengths which control
the cross bars on the error bars.

ploterr(:z:,y}
Same as plot() except error bars are drawn on the symbol or
character. The lengths are set from the last seterrbars(} call.

out ...DJ J"a.nge
Not a subroutine, but a global variable that contains the
number of times a plot(), ploterr(), or dra.wO endpoint was out­
side the viewport. It is reset by calls to i:n:i.tplot(}, end.plot(},
and setviewport(}, but can be set by the user at any time.

2. Plot Ouiput Programs

2.1. Plot
This is a system program which expects coded plot connnands as the

:input, either from a file or ·a pipe. It opens one of the plotters, accuIIDJ.­
lates and prints the plot.

"plot" with no options alternately tries to open the Calcomp and
Versatec, making the plot on the first available device. "plot" uses raw
disk areas to accumulate the plot, and waits if one of the four raw areas

\

I
l' • l

-6-

is not available.
The options are:

"""9' make the plot program use the Versatec for plotting.
-c make the plot program use the Calcomp for plotting.
-s write the plot raster output on standard output instead of

opening a plotter. (Someday may be useful for merging troff or
other output with plot files.)

-o keep the plotter open between plots. Should only be done after
plot has been accunrulated in a file, and for plots which must
be on consecutive pages, since it ties up the plotter.

-n causes program to ignore control-C's.
-I shrinks each plot to one quarter of its original size and prints

four plots per page.

2.2. Hpplol
This program needs to be run from an HP graphics terminal, or else

you must log in on an HP, and then from another terminal redirect the
standard output from your plotting program to that device. (Do a "who
am i" on the HP to find out the name of the terminal, and the device will
be "/dev/tty:" where "z" is the appropriate letter).

"hFJJlot" puts the HP in graphics mode and draws the plot as it
. reads the commands. When it is done with one plot (when it sees an

"mdplot(J'), it beeps and waits for you to type any character on the HP
keyboard. If there are more plots, it starts the next one, or else it resets
the. terminal back to its original mode.·

3. Eramples

3.1. A Scatter Plot

HJ,nclude <plot.h.>
#include <stdio.h>

1 • the plot header file • /
1• the standard i/o package •1

main()
l

inti;
.tloat x, y;
char butrer[B1], beading[50];

initplot(): 1• initialize and begin •;
setviewport(115, 115, 2015, 1445); • /• leave some space for labels •1
setwindow(0.0, 0.0, 10.0, 10.0); 1• plot is scaled from 0-10 •1
xaxis(0.0, 0.0, 10.0, 5); 1• start at (0,0), 10 units long, 5 tics •1
label(""g"): 1• this format omits unneeded zeros •1
tiUe(''X axis"); 1• default is centered •1
yaxis(0.0, 0.0, 10.0, 10}; 1• start at (0,0), 10 units long, 10 tics •1
label("%g"): 1• see the C manual tor other formats •1
ltitie(" ",''Y axis","no units",TD..R90); 1• no lower title, rotated 90° •1
setllnetype(LT ..DO'ITED): 1 • used dotted lines for gridding • /

\

hgrid();
vgrid();
setlinetype(LT ..SOI.JD);
xaxis(O.O, 10.0, 10.0, 1);
yaxis(10.0, 0.0, 10.0, 1);
setlinetype(LT ..DOTPLOT);
for(i=O; i<lOOO; i++) l

J

x = rand() / 32767. • 10;
y = rand() / 32767. • 10;
dra,r(x,y);

setlinetype(LT ..SOI.JD);
setplotchar('x');
for(i=O; 1<20; i++) l

'
x = rand() / 32767. • 1 O;
y = rand() / 32767. • 10;
plot(x,y);

setextjust(T J ..CC);
setextsize (2):
move(5.0, 10.5);
fprintf(stderr,"Input title: ");

gets(heading):

-7-

1• horizontal grid •1
I• vertical grid • /
1• back to default •1
I• close off top of box • /
1• close off side - no tics • /
1• scatter plot •1
1 • generate 1000 random sets of points • /
1• between O and 10 •1

/• if.linetype is dotplot, a draw makes
1• a dot at the endpoint•;
;• back to regular plot •1
/*wiiruse 'x' for character to plot •1
1• plot 20 random points • /

I• center text strings • /.
1• make text size larger •1
1• move pen •1
1• messages to the user mu.st .

use stderr - not just printf() • 1

sprintf(butfer,"Ex. 1: %s ", heading);
1• get a string from standard input •1
I• see C manual for

JD>re explanation of sprintf() • 1
1• this is the plot routine • / print(butfer);

endplot();

3.2. A log Plot

#include <plot.h>

main()
l

long x:
tloat y;
extern double log():

double log10 = log(lO.):

1• careful of priJ?.t() and printf() • /
1 • and no newline in string to be printed • 1
1• tlushes buffers, stops accumulation •1

1• the plot header file • 1

/• library subroutines must be declared • 1
1• jf they return non-integer values•!
1• save this as a constant • 1

initplot(); 1• initialize and begin • 1
setviewport(115,115,2015,1445); 1• actual area for plotting •1
setwindow(0.0,-1.0,200.0,5.0); 1• semi-log plot • /
xaxis(0.0,-1.0,200.0,5); 1• this is the linear axis •1
label(":;g"): •
logyaxis(0.0,-1.0,6.0,6); 1• use log values for axis • /
setextdir(TD..R90); 1• set direction for labels • /
label("lOe,Cg"); . 1• this makes good log labels •1
title(''Ex. 2: Log Plot 1"): 1• Just 1 centered title •1

\

) . 1

mov~(0;0,0.0);
for(x=0;x<200;x+=10) t

y=x•x+x;
y = log(y) / logl0;
dralr((tioat)x, y);

J
endplot();

xaxis(0.0,-1.0,200.0,5);

label("7og");

- 8 - •

1• move to origin •1
t• draw; curve •;
!• y: r' + X •/
t• convert it to base 10 •1
1• see casts in the C manual • /
/• arguments must be floats • t
t• end of plot 1 •1

/• same viewport and window •1
1• no tni.tplot{) needed for next plot •1

logyax:is(0.0,- 1.0,6.0,6); t• use log values for axis • /
setextdir(TD...R90); t• set direction for labels •I
label("10e~g"); 1• this makes good log labels •1
tl.tle(''Ex. 2: Log Plot 2"); 1• just 1 centered title •/
setplotchar(C.J3LD...CffiCLE); t• set character to solid circle •1
seterrbars(0.0,0.0,0.15,0.15,8,8); t• set length or err bars •1
move(0.0,0.0); 1• move to origin • /
for(x=O;x<200;x+= 10) f t• draw; curve • t

y=x•x+x; t•y=r'+x•/
y = log(y) / logl0; 1• convert it to base 10 •1
draw((tloat)x, y); 1• see casts in the C manual •1
ploterr((tloat)x, y); 1• draw plot symbol with error bars •1

J
endplot();

3.3. Jlulliple Plot.s on a Page

Nfnclude <plot.b.>
#define MAX 60

main()
l

inti, lasti, bin[MAX+l];
doat x, mid, gauss();

for(i=0;i<l000;i++) l

I

do f
x = gauss():
:x: ·= (x+5) • 6;
i while (x<0 11 x>60);
bin[(int)x] ++;

initplot();
setviewport(200,120,950,1480);
setwindow(0.0,0.0,60.0,100.0);
xaxis(0.0,0.0,60.0,6);
label("7og");
tl.tle("tbis is the X axis");
ya.xis(0.0,0.0,100.0,5);
label("7og");
tl.tle("tbis is the Y axis");

\

t• end of plot 2 •;

1 • the plot header file • /
1• maximum number of histogram. bins •1

1 • generate a random distribution • I

t • gaussian distribution • 1
1• spread and center around 30 •1
1 • try again if out of range • t
t • increment the corresponding bin • 1

I• initialize • t
1 • about half the page • t
;• user coordinates •1

setextsize(2);
tl.tle(''E.x. 3: Gauss 1 "):
setextsize(l);
xa.x:i.s(0.0, 100.0,60.0,6);
yaxis(S0.0,0.0,100.0,5);
mcve(0.0,0.0);•
lasti = O;
for(i=0;i<M:AX+1;i+=5) f

j

mid = (i + lasti) / 2.;
. draw(mid,(tloat)bin[lasti]);
. draw(mid,(float)bin[i]);

draw((float)i. (float)bin[tD:
lasti = 1;

initplot();
setviewport(1260,120,2010,1480);
setwindow(0.0,0.0,60.0, 100.0); •
xaxis(0.0,0.0,60.0,6);

. label("%g");
title("this is the X axis");
yaxis(0.0,0.0,100.0,5);
label("%g");
title("this is the Y axis");
setextsize(2);
tl.tle(''Ex. 3: Gauss 2");
setextsize(l);
xaxisl0.0.100.0.eo.o.s,;
yaxis 60.0,0.0,100.0,5);
move 0.0,0.0);
lasti = 0; .
for(i=0;i<l!AX+l;i++) f

mid= (i + lasti) / 2.;
draw(mid,(float)bin[lasti]);
draw(mid,(tloat)bin[i]);
draw((tloat)i, (.tloat)bin[i]);
lasti = i;

j
endplot();

float
gauss()
I

double u, v, s, t;
extern double log(), sqrt(), rant();
do f

u = 2.-rant()-1.;
V = 2. -rant()-1.;
s = u~ + v4v,
f while (s >= 1.);

t = -2.•log(s)/s;
t = sqrt(t):
return(u~);

-9-

1 • bigger size • 1
• 1 • titles the last axis drawn • /
1• back to normal •1
1 • close otf box • /

1• go to origin •1

1 • do every 5th bin • 1
1• get midpoint •1
1 • horizontal line • 1
1 • vertical line • 1
1 • horizontal again • /
1• save for next time •1

1• reinitialize with no page feed • /
1• second half of page•;
1• user coordinates •i·

1 • this has to be a floating format • I

1 • bigger size • /
1• titles the last axis drawn •1
1• back to normal • 1
I• close otf box • /

1• BO to origin • 1 •

t • do every bin this ti.me • I
1• get midpoint •1
1• horizontal line •1
1 • vertical line • 1
1• horizontal again •1
1• save for next time •1

l. • I '

; . ''

- 10-

3.4. Compiling a User Program

·S cc yourprog.c -IP -o yourprog
(compiles your prouam with library "P" and puts the output in "yourprol(')

3.5. Running the Program

S yourprog I plot
(aenm your output directly to the first available plotter)

S yourprog I plot -4
(prints four plots per pqe)

S yourprog > savfil
(save11 your output in "savfil" and does no plottlni)

S plot -c4 < savfl.l
(plots the already created output on the Calcomp, four to a pqe)

S you.rprog I tee savfl.l I plot
(saves a copy of the output in "savfil" and
also sencb a copy .to be plotted)

S yourprog I hpplot
(if the terminal is a Hewlett-Packard, clear.,

the screen and draWB the plot in graphics mode)

S yourprog I hpplot > /dev/ttym
(you must have laued in on "ttym" - it must be an HP - and
then you can run thiB from any terminal)

S yourprog I tee savfl.l I hpplot
(prints on the HP as the plot is accumulating, and also saves a
copy in "savfil" for later hardcopy printing)

\

- - £"1111 PVI , .. , -I f"14.., •r '"3

' ••

•
.. .

. .
. .

.. ..
+ .
0 -a.

" II
+

Cl

Ji - .. -· ..
i!i - : . .. :

: .. :

·, ...

" •
•·
al, •

11 • • .. • • • \ •1•1,

-11-

!

•

• ,_
!!

•

•
..

:
!
I

•· IC ..

..
• •

..

•
•

! •

I I

t

- ""'

- I

I

a

' ! I
IC .,
=
!

I :f

!!

• . ' •
... J.

a

a

' • i IC

R ' ! . = i
!!

•
I '

a
.. .. J.,

ssneg '£ ·XJ
!!

!

..
!:

I

'

•
l"'OI 1191 - ·-I 4.., 'I '"3

Appendix A:
Plot Multiplexing

Don /Ji.tch.sU

Calit' Institute of Technology
Pasadena, Ca

ABSTRACT

Multiplexing plots allows a program to accumulate many
separate plots du.ring a single pass through the data. All plots
should have the same windowing transformation (same viewport
and same window), since these routines simply mark the output
stream tor later separation: no variables are saved or calculations
are done.

1. Introduction
Multiplexing plots allows the user to accumulate and print up to 256

plots during one pass through the data. This is especially useful for
sequential-access devices such as magnetic tape, where the rewind and
rereading time are substantial.

The multip~exing fits well into the existing plot package. Even
though many plots may be accumulated at one time, there is still only
one output stream containing all the information. The multiplexing rou­
tines insert extra characters into the stream for each plot channel
change. • The output stream must be piped into a demultiplexer which
separates the output and feeds the plot program with normal plot input.

There are several things to be aware of when multiplexing plots. The
scaling of all points is done in the user program by the library subrou­
tines, and several global variables are saved by the routines. When
changing plots, none of those variables or the windowing transform are
changed. If all plots have the same window and viewport, points can be
generated interchangeably and printed on different plots. If the scaling
is not the same on all plots, everything must be reinitialized when
changing plot channels (the window, viewport, linetype, textsize, etc).
For moving and drawing lines, the last position of the "pen" is saved. If
you move to a position but then change plot channel, that position will
not be saved for the next time you change back to that plot. To draw
continuous lines on separate plots, the user must save the posit.ion of
the pen on that particular plot himself, and move there before he draws
the line.

\

-2-

2. Library Subroutines
Tliere are two new plot library subroutines to be called from the

user program as the plots are being generated. They are in the standard
plot lbrary (-IP) and function in the same manner as all the other
librar:r routines.
chan:n ,t(a:n)

Directs the plot output stream to channel an, where an is in
the range 0-255. All subsequent output will go to this channel
until the next cha:n:net() call. Each separate plot should be col­
lected on a different channel.

broad.ca.st (a.n,a:m)
This allows the output st.ream to be duplicated on a range of
channels, instead of just one. The regular plot output will be
duplicated on channels a.n through am inclusive until cha:n­
netO or broad.ca.st() is called again.

3. Denno: Program
The coded plot commands (the standard output from the user plot

routines) must be piped through the program "demu.:z:" before they are
sent to "plot" for plotting. "demu.z" is the plot demultiplexer - it sorts
out tJ1e stream of plot commands and prints each plot sequentially.
"d.emuz" reads standard input and writes on standard output, so input
should be piped or redirected from a fl.le. The output can be piped to
"plot'' directly or saved in another file fat later plotting. •

4. EDamples

4.1. A Plot Program

#include <plot.h>
#include <stdio.h>

main()
I

inti. p:
char bu![20];
tloat x,y;

in itplot():
stitviewport(150,150,1900,1400);
st,twindow(0.0,0.0,100.0,500.0):
b1 ·oadcast(0,2};
xuxis(0.0,0.0, 100.0, 10):
label("~g");
ti :le("percentage");
ytlXis(0.0,0.0,500.0,5);
label('~g"):
ti :Je("cou.nts");
xnxis(0.0,500.0, 100.0, 1);
yrnds(100.0,0.0,500.0,1):
st itextju.st(T J ...CC);

1• initialize •1
1• all should have same viewport •1
1• and same window •1 •
1• send this to all 3 channels • 1
1• draw an axis •1
1• label tic marks • 1
1 • title the axis • 1
1• draw y axis •1
1• label tic marks • /
1• title y axis •1
1• no tic marks •1
1• close off box • 1
1• center printing •1

setextsize(2);
setlinetype (TL..DOTPLOT);

tor(p=0;p<3;p++) (
cha.nnel(p); ·
mcve(50.0,550.0};
sprintf(but,"Plot {l'?;d", i):
print(buf);

I
for(i=0;i<3000;i++) (

p = rand()/32768. • 3;
cha.nnel(p);
x = rand()/32767. • 100.;
y = rand()/32767. • 500.;
draw(x,y);

J
broadcast(0,2);
endplot():

4.2. Runnmg the program

S yourprog I demux I plot

s yourprog > savetlle
S demux < savefUe I plot

-3-

S demux < saveftle > saveftle2
S plot < saveftle2

\

1• big for heading • I
1• all will be scatteplots •/

1• change plots•;
1 • move up for title •;
1• make unique labels • /
1• label each plot with i:t's number •;

1• select a random channel •1

1• random x and y •1

/ • plot a random point • 1

1 • all channels •;
I• must be called for each plot •1

-• ...
0 -Q.

0 •
1; -a.

. .

I •

. : . ·.

I I

•,

·-

I ..-

.. :

. · .. ·

t ..

\
..-

-4-

I

a

I

•. ,e :

.. I

a t . '
. '

a

I

9

•
I ! •

!

:'•, a

. a
•,

,e

~ I

a i
'

'.• a

I

11

•
! •

a, p

,, ... ,
..,;

!
..

a
•,

:
I

. ' ,e
:
•,

·. I

N • ' . . f ... : '· I
0 l -Q.

:

' :
\

.
·. •,

a

I

\ ·. ,
!I

•
I I • I ! • ..-

' ••

