
INTERNAL REPORT #85 

THE MAXIMUM SMOOTHNESS METHOD 

OF SPECTRUM RECONSTRUCTION 

by 

J. Zmuidzinas 

Space Radiation Laboratory 

California Institute of Technology 

Pasadena, California 

9-16-81 



l Introduction 

The Maximum Smoothness method was originally created to solve a frequentl,1 ocur:ring 

problem in space physics, the problem of reconstructing a spectrum from an in::trument's 

(TET, in our case) response functions and counting rates. The spectrum, response functions, 

and counting rates are all related by the following equation: 

b 

(1) r1 = j's(E)fi(E)dE i = 1, n 
a 

where ri is the counting rate of type i events (events/sec), J\(E) is the instrument's effective 

geometry factor (cm2-sr) for type i events as a function of energy (the response 1 unctions), 

and s(E) is the isotropic particle spectrum (particles/ cm2-sr-MeV-sec). In the c,.se of TET, 

the subscript i labels events according to their range. The fur:.ctions fi(E) a.·e usually 

determined experimentally and are assumed to be completely kr.•ovm in this mport. The 

measurement of these functions for TET is described in ZmuidzL•1as and Gehrels, [1981]. 

Note that eqns. (1) do not deterwlne s(E) uniquely; in fact, there if an uncountable number 

of functions s(E) which satisfy eqns. ( 1) . The way information s';-;out a spectrn.t~ s(E) is 

usually presented is by specifying the averages of s(E) for n energy intervals (n = wmber of 

response functions) : 

EJ 

(2) 1 
/ s(E)dE 

j-1 

Just as eqns. (1) do not uniquely specify s(E), they do not uniquely t1pecify the si 's . In order· 

to solve for the Sj 's, one has to make some assumptions about the spectrum s(E). 
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n. Some Methods 

Perhaps the simplest and most straightforward way of approaching this problem is by 

assmning the spectrum s(E) is a step function : 

j = 1, n . 

One must choose Eo and En so that the entire region where the response functions are 

nonzero (call this :region [a,b]) is covered, i.e. E0s;;a and En~b. In this case, eqns. (1) can be 

v,;ritten 

b 

ri = J s(E)fi(E)dE 
a 

EJ 

= t si .r fi(E)dE 
J=l J)!j_1 

With the definition 

EJ 

Aij = ;· fi(E) dE 
J-1 

we get the following matrix equation : 

(4) i = 1, n . 

The Aii matrix can then be inverted to yield the si 's in terms of the ri 's. This method will be 

referred to as the MI method in this report. A way to improve this method is to try to take the 
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gross spectral shape into account. In space physics, spectra often have a power la:w- form; 

s(E) = A E-'>' . 

Eqns. (1) are rewritten as 

EJ 

ri = j~ l s(E)fi(E)dE . 

which gives 

n 
( 5) ri = I;AijSJ 

j=l 

where 

9 
/ s(E)fi(E)dE 
j-1 

and ~E1 = Ej-EJ-l . The 1\1 is calculated with a power law spectrum s(E) = A E-'>'. The m.a.trix 

is then inverted to calculate the s1 's. The Aii 's are independent of A; the )' is chosen such 

that the calculated values of sj are consistent with this )'. This is the method presented in 

Hoyng ii;l.nd Stevens, [1973] and will be referred to as the RMI (refined matrix inversion.) 

method in this report. 

Other methods solve for the sj 's by calculating a specific s(E) that satisfies eqns. (1) and 
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then integrating this s(E) over the various energy intervals. One way to calculate an s(E) is to 

assume a specific functional form For example, assume that s(E) is a linear combination of a 

set of basis functions: 

s(E) = 1: aiyi(E) 
j:a:1 

Inserting this form in eqns. (1) gives a set of linear equations for the ai 's: 

b 

where Aij = jfi(E)yj(E)dE . Once the Ol.j 's have been calculated, the spectrum s(E) and the 
a 

Sj 'scan easily be calculated. Note that both the MI and RMI methods are special cases of this 

method. The choices for the Yi(E) 's that correspond to the two methods are: 

Note, however, that the 7' in the RMI method changes. 

The Maximum Smoothness method also calculates a specific s(E) ; however, the s(E) is chosen 

by an extremum principle with no explicit assumptions about the functional form. The next 

section describes this method. 
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m. The Ma:rimum Smootl:m.ess Method 

The Maxim.um Smoothness method (the MS method) calculates a specific s(E) by finding 

the s(E) which satisfies eqns, ( 1) and which minimizes 

(6) 
b [ ·2 

I = J d2log( s(E) ) j d(log(E)) 
a d( log(E) )2 

The reasons for minimizing this integral will now be discussed. We would like the s(E) that we 

choose to have the following properties : 

1) s(E) is a smooth, continuous function 

2) If a power law is consistent with the counting rates ri, 

we would like s(E) to be that power law. 

First of all, we must define what we mean by "smooth". After defining "smooth", we can always 

satisfy requirement 1) by choosing the "smoothest" possible s(E). Requirement 2) will 

automatically be satisfied if power laws are the "smoothest" possible functions according to 

our definition. Our intuitive notion of "smoothness" tells us that straight lines are the 

"smoothest" functions - not power laws. However, power laws are straight lines on a log-log 

plot. This can be e1,.1>ressed as 

d(log(s(E)))_ = 
d(log(E)) constant . 

We shall therefore consider s(E) to be smooth if its derivative is nearly constant; i.e. its 

second derivative d
2
log( s(E) ) is small. The integral 

' d( log(E) )2 

bf ]2 I = Ji d2log( sfl;l)_ d(l (E)) 
a d( log(E) )2 og 
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is thus a measure of the "smoothness" of s(E) on the interval [ a,b]. The second derivative is 

squared to make both positive and negative ' 7alues count equally. 
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N. Mathe.Dl!:lLtics of the Mootimu_m Smoothness Method 

This section treats the mathematical problem of finding a spectrum which satisfies eqns. 

(1) and minimizes the integral given in eqn. (6). We first treat a simpler problem whose 

solution is needed to solve the problem above. The problem: Find the y(x) which satisfies 

h 

di = J gi(x)y(x)dx 
a 

and which minimizes 

b [ 
2 

]2 I=J'dy dx 
a dx2 

This can be solved using variational calculus with Lagrange multipliers (see Mathews and 

Walker, [19701). We need to consider the follovving integral; 

The Ai 's are the Lagrange undetermined multipliers; the factor of 2 is included for 

convenience. To find a differential equation for y(x), we perform a variation in y and set the 

variation in J to zero. We get: 

Y ➔ Y + oy 

b . 

d2v doy]b d3y lb Jr d4v n l M = 2-=--..!-~- - 2-"-oy + 12~ - I; 2X1gi(x) oydx 
dx2 dx a dx3 a a cbC' i=l 

= 0 . 
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First consider variations oy that satisfy 

oy(a):::: oy(b) :::: doy (a) :::: ~(b) :::: 0 
dx dx 

The terms in oJ which are left over from the partial integrations va.r. ish and we are left 11(11th 

the integral term equal to 0, From this, we conclude that 

n 
(7) • ~i\i~(x) 

i=l 

Now, consider variations oy which vanish at the endpoints a and b b11t whose derivatives are 

arbitrary at these endpoints. Since the integral term has already b9en established to be 0, 

we are left with 

2 lb o :::: oJ = 2s!'.:Y.ML 
dx2 dx ,a 

from which we conclude that 

(8) 
d2 QI(b) _y_( a) = = 0 
dx2 dx2 

Similarly, 

(9) d3v 
:~(b) 0 -----(a) = = 

dx3 

We must now integrate the differential equation for y. First, we need notation for the 

integrals of glx) : 

X 

G/n>(x) = J cln-l)(x)dx 
a 

and 
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With this notation, we have (from eqns. 7, 8, and 9) 

n 
(10) y(x) = a + {3x + I; AiG/4)(x) 

i=l 

along with 

n 
(11) I; AiGl1)(b) ;:: 0 

i=l 

(12) f; 11.iG/2)(b) ;:: 0 
i=l 

Inserting (10) into the counting rate equations (eqns. 1) gives 

b b b 

(13) di = ct f gi(x)dx + fl J xgi(x)dx + ,f: AJ J Gf 4)(x)gi(x)dx 
a a J=l a 

i=i,n, 

Equations 11, 12, and 13 are n+2 equations for a, {J, and AJ, j = 1. n . Figure 1 shows these 

equations in a matrix form. This matrix is inverted to calculate a, (3, and the Ai 's , which can 

then be used to calculate y(x) according to (10). 

We will now return to the original problem. First of all, we rn,__,.ke the following . 

substitutions: 

x = log(E), ex= log(a) , {3 = log(b) 

y(x) = log(s(E)) 
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With these substitutions, the problem becomes: Find the y(x) which satlsfles 

fJ 

(14) ri = J' exp( y(x) )f'i(x)dx 
Gt 

and minimizes 

If we apply variational calculus to this problem, we obtain a nonlinear differential equation 

which cannot be solved numerically since it contains the Lagrange multipliers which. are 

unknown. We will instead develop an iterative scheme to calculate y(x), Assume we have an 

approximation to y(x), say y(n-l)(x). From y(n-l)(x) we would like to calculate an improved 

approximation yCn)(x), and then y(n+l)(x), etc. As this procedure converges, we will have 

ly(n)(x)-y(n-l)(x) j«1. In this case, 

Using this approximation in the counting rate equations as a strict equality, we obtain 

fJ 

ri = f exp( yCn-I)(x) )[ 1 + y(n)(x) - y<n-l)(x) }r,i(x)dx 
Cl. 

or 
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fJ 

(16) dl11> = J y(nl(x)gln>(x)dx 
a 

where 

fJ 

ctln) = ri - f gln)(x)[ 1 -y{n-l)(x) ]a.x 
Ol 

Note that gln>(x) and d/n) can be calculated entirely from ri, f'i(x), and y(n-l)(x). We must 

therefore find the y<n>(x) which satisfies eqns. (16) and which minimizes 

}
fl,, [d2y(n) ]2 

I= ~ dx. 
C( dx 

This is simply the problem solved in the beginning of this section. To start this iteration 

process, we use a y{1)(x) of the form yU)(x) = a + -yx . The initial a and 'l are not critical ; 

better choices might require one less iteration for convergence. In our case, a and ?' are 

chosen to minimize 

where r\ = c1/ T, T = livetime ( c:i events of type i are observed in time T), and 

fJ 

µ/ T = J exp( a + yx )f'i(x)dx 
0( 



V. Comparison of Methods 

A comparison of the Maximum Smoothness (MS), the Matrix Inversion (MI), and the 

Refined Matrix Inversion (RMI) methods was made. The following steps were taken: 

1) A spectrum s(E) was selected - for example, a 

power law spectrum, an exponential spectrum, etc. 

2) The averages of the selected spectrum s(E) in 

each of the energy bins was calculated. These are the 

so-called "true fluxes". 

3) The spectrum s(E) was multiplied by the response 

functions and. integrated to yield the count rates ri . 

4) The fluxes in the energy bins were calculated with 

each of the three methods - MS, RMI, and MI. 

5) The fluxes calculated in step 4) were compared to the 

"true" fluxes calculated in step 2). The average absolute 

error (defined below) was used as a figure of merit in 

this comparison. 

Average absolute error: For each energy bin, the relative error of the calculated flux (step 4) 

as compared to the true flux (step 2) was calculated (for each method). The absolute values 

of these relative errors were then averaged over all of the energy bins to yield the average 

absolute error for each method on the particular trial spectrum 

Both the MS and RMI methods calculate fluxes consistent with a power law spectrum if 

some power law is consistent with the counting rates. The MI method is therefore the only 

method with a nonzero error for power law trial spectra. Figure 2 shows the average absolute 



error of the MI method as a function of 1 ( s(E) = AE-'l' ). AB y increases, the approximation 

that s(E) is constant in each energy bin becomes worse, hence the error gets larger. 

The average absolute error is plotted against spectrum number in Figure 3. The 

spectrum number simply labi3ls the different trial spectra that were used in the comparison. 

They are plotted, along with the Maximum Smoothnes reconstruction of that trial spectrum, 

in Figures 4 through 10. The trial spectra were: 

1) Exponential, s(E) = exp(-E/ 10Mev). In this case, both the MS and RMI methods give 

similar errors, while the MI method is much worse. 

r [loR;E - lop;20 ]
2
1 2) Gaussian, s(E) = expi.- ½ 0.5 The MS method is much better than the 

other two in this case. 

3) These spectra are all power laws with a break - i.e. there are two y 's, one for low 

energies and one for high energies, The following functional form was used: 

1 [ E ]
72

1 1 + (E/Ea)-n Ea 

for E «Eo, s(E) = A(E/ Eaf 1 

for E »Eo, s(E) = A(E/ Ea)'2 

In all cases, A was chosen to be 1 ( this factor is unimportant since all methods are 

homogeneous - if the spectrum is multiplied by a factor of 2, so are the fluxes that these 

three methods calculate), and n (which determines how sharp the break is) was chosen to be 

5, 

a) 11 = -1, 72 = -3, and Ea= 20 MeV. MS and RMI are fairly close in this case. 

b) y 1 = -1, )'2 = -3, and E0 = 70 MeV. RMI is much worse than MS in this case. 
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c) y1 = -3, y2 = -1, and Eo = 20 MeV. As before, MS is much better than either of the 

other two methods. 

4) Step function spectrum. This is an example of a spectrum that the MI method 

calculates exactly. It was tried mainly to compare the MS and RMI methods. The MS method is 

much better than the RMI method in this case. 

5) Gaussian+ Power Law, s(E} = 500,;-' + exp[-i.[log(E) ~~g(le.e)n. Although none 

of the methods come very close, the MS method is by far the best. This example also serves to 

show how difierent spectra can be and yet give the same counting rates. 
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VI. Other Applications 

The Maximum Smoothness method can also be used to find a smooth function y(x) which 

passes through a set of points (xi.Yi), i = 1, n , i.e. y(xi) :::: Yi· We need to write these 

constraints in an integral form; 

b 

Yi = f y(x)o(X-Xj)dx 
a 

These are analogous to the counting rate equations; the "response" functions in this case are 

Dirac delta functions. We then find the y(x) which satisfies these eqµations and which 

minimizes 

\ 

The solution y(x) turns out. to be a cubic spline interpolation of the points (xi,Yi) with the 

boundary conditions 

d2 d2v dsv ds 
~(a) = =...!-(b) = .:::....1-(a) = __y_(b) = O 
dx2 dx2 dx3 dx3 

This method was used to interpolate the response functions for TET. This method can be 

generalized to match derivatives of y(x) in addition to values of y(x) by using derivatives of 

the Dirac delta functions as "response functions". 



FIGURE CAPTIONS 

Figure 1 The matrix equation which occurs in the solution of the Maximum 

Smoothness method. 

Figure 2 Average absolute error of the MI method as a function of 

power law gamma. 

Figure 3 Average absolute error of the three methods (MI, RMI, and MS) 

for all of the different trial spectra. 

Figures 4-10 Plots of the trial spectra along with the Maximum Smoothness 

'!?construction. Horizontal bars represent the avera ·e fluxes in the 

energy bins of the plotted spectrum. 

Figure 11 Plot of the response functions used (TET response functions; 

01-3 to 01-7; 0.5 MeV lower limit on 01 and 02 energy loss, 2.5 MeV 

upper limit). Only the first four (01-3 to 01-6) were used in the 

spectrum reconstruction since the last one (D1-7) is not determined 

well enough in the high energy region. 
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