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i Introduction

The Maxirmum Smoothness method was originally created to soive a frequently ocurring
problern in space physics, the problem of reconstructing a spectriun from an insitrument's
{(TET, in our case) response functions and counting rates, The speclruim, response functions,
and counting rates are &all related by the following equation:

b
(1) n= [ sENEME i=1n
a

where 1y is the counting rate of type i events (events/sec), f(E) is the instrument’s effective
geometry factor (emP—sr) for type i events as a function of energy (the response {unctions),
and s(E) is the isotropic particle spectrum (particles/ cmg—sr—Me‘vfméec). In the cese of TET,
the subscript i labels events according to their range. The functions §(E) a-e usually
determined experimentally and are assumed to be completely krown in this report, The
measurement of these functions for TET is described in Zmuidzinas and Gehrels, r1e81].
Note that eqns. {1) do not determine s(E) uniquely ; in fact, there is an uncountable number
of functions s(E) which satisfy eqns. (1) . The way information s>out a spectrum s(E) is
usually presented is by specifying the averages of s(E) for n energy intervals (n = aumber of
response functions) :
By
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Just as eqns. (1} do not uniquely specify s(E), they do not uniquely apecify the s;'s . In order-

to solve for the s;'s, one has to make some assumptions about the spectrum s(E).




. Sorms Hethods
Perhaps the simplest and most straightforward way of appreaching this problem is by

assuming the spectrum s(E) is a step function :

s(E) = g, E=FE<E, j=i,n

Cne rmust choose Ey and E; so that the entire region where the response functions are
nonzero (cell this region [a,b]) is covered, i.e. Fy<a and Fy=b. In this casge, egns. (1) can be
written
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With the definition

By
Ay = L/i' t(E) dF

§—1

we get the following matrix equation :
n .
(4) ry = Z Ay sy, i=i,n

The Ay matrix can then be inverted to yield the s; 's in terms of the ry 's. This method will be

referred to as the MI method in this report. A way to improve this method is to try to take the
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gross spectral shape into account,lln space physics, spectra often have a power law form
g(B) = AE™”

Eqgns. (1) are rewritten as

&
P = Z s(B)f;(E)dR
=1 -1
&
!ﬂ s(B)f(E)dR Ej
= i &"— 5 .._i_
= E ' AR
L [E)ar &
Ly &
-1
which gives
n
(5) ry = ZAﬁSj
=1
where
Ej
Ef S(E)E(E)dE
Ay = 2
3] E‘}
s(E)dE

AE

1

and AE; = E;~E;_; . The Ay is calculated with a power law spectrum s(E) = A E™?, The matrix
iz then inverted to calculate the s; 's. The Ay 's are independ\ent of A; the vy is chozen such
that the céioulated values of s; are consistent with this 7, This is the method presented in
Hoyng and Stevens, [1973] and will be referred to as the RMI (refined matrix inversion)
method in this report.

Other methods solve for the g 's by calculating a specific s(E) that satisfies eqns. (1) and
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then integrating this s(E) over the various energy intervals. One way to caleulate an s(E) is to
assume a specific functional form For exarnple, assume that s(E) is a linear combination of a

set of basis functions:
s(E) = il ay(E) .
=
Ingerting this formin eqns. (1) gives a set of linear equations for the o 's :

= iA;J(xJ

=

b
where Ay = f fi(E)yi(E)dE . Once the o; 's have been calceulated, the spectrum s(E) and the
' a

g 's can easily be calculated, Note that both the MI and RMI methods are special cases of this

method. The choices for the y;(E) 's that correspond to the two methods are:
(1) v(E) = 1 E<E <

(RMI) yi(E) = E7  E<E<E

Note, however, that the ¥ in the RMI method changes.

The Maximum Smoothness method algo calculates a specific $(E) ; however, the s(E) is chosen

by an extremum principle with no explicit assumptions about the functional form. The next

section describes this method.
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. The Marimmm Smoosthness Method

The Maxiroum Smoothness method (the MS method) calculates a specific s{R) by finding

the s(E) which satisfies eqns, (1) and which minimizes

b
(6) f

The reasons for minimizing this integral will now be discussed. We would like the s(E) that we

2l
Lol ol j a(log(E))

choose to have the following properties :

1) 5(E) is a smooth, continuous function
2) It a power law-is consistent with the counting rates n,

we would like s(E) to be that power law.

First of all, we must define what we mean by "smooth". After defining "smooth”, we can always
satisfy requirement 1) by ‘choosing the "smoothest" possible s(E). Requirement 2) will
automatically be satisfied if power laws are the "smoothest" possible functions according to
our definition. Our intuitive notion of "smoothness" tells us that straight lines are the
“smoothest" functions - not power laws. However, power laws are straight lines on a log-log

plot. This can be expressed as

d{log(s(E)))

d(log(E)) = consgtant

We shall therefore consider s(E) to be smooth if its derivative is nearly constant; i.e. its

d*log( =(R) )

second derivative, ig small. The integral
d(Tog(E) )P ¢

b
I = f M—L—&} d(log(E))

a (log(E) )
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is thus a measure of the "smoothness” of s(E) on the interval [a,b]. The second derivative is

squared to rmake both positive and negative '7alues count equally.
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. Hathemztics of the Mazimum Smootbness Hethod

This section treats the mathematical problem of finding a spectrum which satisfies eqns,
(1) and minimizes the integral given in eqn. (8). We first treat a simpler problem whose

solution is needed to solve the problem above, The problem: Find the y(x) which satisfies

b
4 = f gi(x)y(x)dx

and which minimizes

LAY
= &y ..
SN

This can be solved using variational caleulus with Lagrange multipliers {see Mathews and

Welker, [1270]). We need to consider the following integral;

bﬂ{ 2
1= ] [[%Z—] - YEnE(x)y(odx

i=]

The »; 's are the Lagrange undetermined multipliers; the factor of 2 is included for
convenience, To find a differential equation for y(x}, we perform a variation in y and set the

variation in J to zero, We get:

y > y+dy
d%y asy| _ ,d% rlay a
s = eI L8N 25 Ley| S/ Po - 33 () |bydx
Ll PN A a & =
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First consider variations dy that satisfy

7(a) = 6y(b) = S2a) = E(b) = 0

The terms in éJ which are left over from the partial integrations varish and we are left with

the integral term equal to 0, From this, we conclude that

Now, consider variations dy which vanish at the endpoints & and b but whese derivatives are

arbitrary at these endpoints. Since the integral term has already b2en established to be D,

we are left with

b
d?y dd
0= ¢J = a2L&Y
di® dx |,
irom which we conclude that
d? d?
8  p{e) = ) =0
Similarly,
3y _ g8 _
(9) azs—(:a) = &%{b) = 0

We must now integrate the differential equation for y. First, we need notation for the
integrals of gi(x) :
i

&) = [ 6t x)dx

a

and



GO = g
With this notation, we have (from eqns. 7, 8, and 9)

10) v = a+px+ S AGH)

i=1

along with

1
o

{11) 2 AG“)

]
o

(12) 3 AGE(b)

i=1

Inserting (10) into the counting rate equations (eqns. 1) gives

(13) dj = fg,(x}dx + ﬁfz.gi (x)dx + Z A fGM) (x)g;(x)dx i=1.n

Bquations 11, 12, and 13 are n+2 equations for a, §, and A;, j = 1, n . Figure 1 shows these

equations in a matrix form. This matrix is inverted to calculate «, 8, and the A 's , which can

then be used to calculate y(x) according to (10).

We will now return to the original problem First of all, we make the following .

substitutions:

= log(E), «=logla)., £=Ilog(b)

y(x) = log(s(E))
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fi(x) = E&(E)
With these substitutions, the problem becomes: Find the y(x) which satisfies
ﬁ’l
(19) = J exp(y(x) )fix)dx
& i
and minimizes

| £
15 1= [

If we apply variational caleulus to this problem, we obtain a nonlinear differential equation

2
da
E_;%dx.

which cannot be solved numerically since it centains the Lagrange multipliers which are
unknown. We will instead develop an iterative scheme to calculate y(x). Assume we have an
approximation to y(x), say y® U(x). From y® (x) we would like to calculate an improved

approximation y™(x), and then y™*'(x), ete. As this procedure converges, we will have

¥y (x)—y®1(x)} |<1. In this case,

exp(y™(x) ) = exp(y® (x) ) exp( y™Hx) -y (x))

S oxp( o)) [1 + 00 -y |

Using this approximation in the counting rate equations as a strict equality, we obtain

E
n= fexp( 5500 14y - 300 JriGas

a

or
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(16) g

where

£
g
I

g
[ -
n— fe]1 - y" () Jax
0

gix) = exp( yP () )i(x)
Note that gf®(x) and d® can be calculated entirely from ry, fy(x), and y®(x). We must
therefore find the y™(x) which satisfies eqns. (16) and which minimizes

2
dx

[ 2yl
dxz

ﬁ«
I=J§

This iz simply the problem solved in the beginning of this section, To start this iteration
process, we use a y¥(x) of the form y{(x) = a +x . The initial a and v are not critical ;
better choices might require one less iteration for convergence. In our case, a and v are

chosen to minimize

R M B ¢
XZ(ﬂ-'}’)—EI{ '\/61]

i=
where r; = ¢/ T, T = livetime (c; events of type i are observed in time 7), and

8
m/T = fexp( a + v )fi(x)dx

o
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V. Comparison of Methods

A comparison of the Maximum Smoothness (MS), the Matrix Inversion (MI), and the

Refined Matrix Inversion (RMI) methods was made. The following steps were taken:

1) A spectrum s(E) was selected - for example, a

power law spectrum, an exponential spectrum, ete.

2) The averages of the selected spectrum s(E) in
gach of the energy bins was calculated, These are the

so-called "true fluxes",

3) The spectrum s(F) was multiplied by the response

functions and integrated to yield the count rates r; .

4) The fluxes in the energy bins were calculated with
each of the three methods - M3, RMI, and ML

5) The fluxes calculated in step 4) were compared to the
"true” fluxes calculated in step 2). The average absolute
error (defined below) was used as a figure of merit in

this comparison.

Average absolute error: For each energy bin, the relative error of the calculated flux (step 4)
as compared to the true flux (step 2) was calculated (for each method). The absolute values
of these relative errors were then averaged over all of the energy bins to yield the average
absolute error for each methed on the particular trial spectrum.

Both the MS and RMI methods calculate fluxes consistent with a power law spectrum if

some power law is consistent with the counting rates. The MI method is therefore the only

method with a nonzero error for power law trial spectra, Figure 2 shows the average absolute
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error of the MI method as a function of ¥ ( s(E) = AE™ ). As ¥ increases, the approximation
that s(F) is constant in each energy bin becomes worse, hence the error gets larger.,

The average. absolute error is plotted against spectrum number in Figure 3. The
spectrum number simply labels the different trial spectra that were used in the comparisen.
They are plotted, along with the Maximum Smocthnes reéonstruction of that trial spectrum,

in Figures 4 through 10, The trial spectra were:

| 1) Exponential, 5(E) = exp(—E/ 10Mev). In this case, both the MS and RMI methods give

similar errors, while the Ml method is much worse,

[ [10gE — 10g20)? |
2) Gaussian, s(E) = exp[-— % [—%—O—E%——J ] The MS method is much better than the

other two in this case.

3) These spectra are all power laws with a break - i.e. there are two ¥ 's, one for low

energies and one for high energies, The following functional form was used:

_ F 72

1 B, 1
1+ (E/Eg)n Eo 1+ (E/ Eo)—n

for E <Ey, s(E) = A(E/ Eg)"t

for E >>Ey, s(E) = A(E/ E)'?

In all cases, A was chosen to be 1 ( this factor is unimportant since ail methods are
homogeneous - if the spectrum is multiplied by a factor of 2, so are the fluxes that these

three methods calculate), and n (which determines how sharp the break is) was chosen to be

5,

a)y, = =1, 73 = =3, and o = 20 MeV . MB and RMI are fairly close in this case,

b) vy = ~1, 73 = =8, and Eg = 70 MeV. RMI is much worse than MS in this case.
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¢) 7 = =3, 72 = —1, and By = 20 MeV . As befofe, MS iz much better than either of the

other two methods,

4) Btep function spectrum. This is an example of a spectrum that the MI method
calculates exactly, It was tried mainly to compare the MS and RMI methods. The MS method is

rmuch better than the RMI method in this case.

- 2
5) Gaussian + Power Law, s(F) = 500E3 + exp[ _%[log(E) _ol;g g(ls.a)] ] . Although none

of the methods come very close, the MS methoed is by far the best. This example also serves to

" show how different spectra can be and yet give the same counting rates.
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VI. Other Applications

The Maximum Smoothness method can also be used to find a smooth function y{x) which
passes through a set of points (xuy), i=1,n , ie. y(x) =y; We need to write these

constraints in an integral forn:

b
= fysx-x)ax |

These are analogous to the counting rate equations; the "response” functions in this case are

Dirac delta functions. We then find the y(x) which satisfies these equations and which

minimizes

b 2
_ d*y
= 15 o

\

The solution y(x) turns out to be a cubic spline interpolation of the points (x,y;) with the

boundary conditions

dz d2 dS dS
S = SE) = T = TE) =0

This method was used to interpolate the response functions for TET. This method can be
generalized to match derivatives of y(x) in addition to values of y(x) by using derivatives of

the Dirac delta functions as "response functions”,



FIGURE CAPTIONS

Figure 1 The matrix equation which occurs in the solution of the Maximum
Smoothness method.

Figure 2 Average absolute error of the MI method as a function of
power Taw gamma.

Figure 3 Average absolute error of the three methods (MI, RMI, and MS)
for all of the different trial spectra.

Figures 4-10 Plots of the trial spectra along with the Maximum Smoothness
“econstruction. Horizontal bars represent the avera e fluxes in the
energy bins of the plotted spectrum.

Figure 11 Plot of the response functions used (TET response functions;
D1-3 to D1-7; 0.5 MeV Tower Timit on D1 and D2 energy loss, 2.5 MeV
upper Timit). Only the first four (D1-3 to D1-6) were used in the
spectrum reconstruction since the last one (D1-7) is not determined

well enough in the high energy region.
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