
INTERNAL REPORT #86

SRL Chapter /Verse Format

by

T. L. Garrard

N. S. Collins

Space Radiation Laboratory

California Institute of Technology

Pasadena, California

9/21/81
(revised 10/8/81)

SRL Chapter /Verse Format

1. Description
In order to maxlll11ze :flexibility and rrumrmze tape length, tapes

should be formatted with lots of small logical blocks squeezed together
into long physical records. The blocking technique described below was
worked out for the HEAO C-3 data analysis but is clearly adaptable to
other projects. It should be treated as a SRL standard and utilized
whenever possible. A substantial library of programs exists already for
handling data in this format and more are being written.

The blocking technique is reminiscent of IBM System 370 VB or VBS
blocking, but is much more visible to the user, much less demanding on
the system. and much less prone to catastrophic data loss to tape
errors. Data is organized into logical blocks called chapters. Chapters
are placed in a buffer as they are generated, and when chapter input
threatens to overflow the buffer, the buffer is :flushed to tape. This pro­
cess is handled by a library routine called putchap. Normally only the
data is written, not the trailing, empty portion of the buff er. Thus
records are of variable length, but always contain an integral number of
chapters. Each chapter begins with a 2-byte "key" integer which
specifies the type of chapter. All chapters of this type have identical
lengths. When reading tape, chapters are retrieved from the input'
buff er by a library routine called getchap. Getchap finds chapters using
a table of chapter lengths which is indexed by the chapter key. This
table is written on e·ach tape in the first record on the tape, in a special
chapter with key = 0. Chapter O has fixed a format, known to getchap.

An embellishment of the scheme allows chapters to be broken down
into verses. Offsets of the verses within .a chapter are also specified in
Chapter 0.

The decision of what constitutes a "logical block", i.e., a chapter or
verse is up to the user but some guidelines are clear. Since the key
imposes a 2-byte overhead ·on each chapter, very short chapters are
inefficient in their tape usage. Since a physical record length of ,.._,4K to
BK bytes is appropriate to PDP-11 applications with 1600 bpi tapes, very
long chapters do not fit into the output buffer efficiently. Thus chapters
should be between ,.._,zo bytes and ~400 bytes long. Any point in a logical
format which seems a likely candidate for insertion of additional items
at some future time, is a good point for a chapter or verse break. Exam­
ple:

current format
wariable verse word

r
theta
X
y
z

1
1
2
2
2

0
1
0
1
2

-2-

new format
variable verse word

r
theta
phi
X
y
z

1
1
1
2
2
2

0
1
2
0
1-
2

Note that since X (& Y & Z) is in a separate verse it is still addressed as
word O of verse 2 in either format. Thus no program changes are
required in programs which read this data when the new format is intro­
duced.

A list of chapters is maintained by Tom Garrard, and selection of
chapter numbers should be done in consultation with him. Documenta­
tion for existing chapters is on /usr/tlg/dpgenerallchap.dc. Note that
some special chapters should be used by all users for consistency:

Chapter O specifies format
Chapter 101 specifies end-of-record
Chapter 102 specifies end-of-interval
Chapter 103 specifies end-of-tape
Chapter 105 specifies end-of-single-file
Chapter 206 specifies end-of-plot

In addition, a number of existing chapters can be used by other
users. Chapter 1 specifies time for both HEAO C-3 and Voyager.
Chapters 202-204 are Voyager display points, and can quite likely be
used as they are by other projects.

2. Programming
Although the previous section applies only to tapes, the following

routines work on both disk and tape for compatibility. Disk records
must always be the same length (currently 2K bytes) so for disk applica­

. tions, very large chapters will waste disk space.

To make a tape in chapter/verse format, this is the general ide.a:
1) Get a unique set of chapter numbers from Tom G.
2) Include (with a #include statement) <chap.h> in your program.
3) For each different chapter format, define a global array of 14

integers. i.e:

int chpA[14] = f length, v1, v2, ,v3, ... , v12, numverses j;

where length is the total number of bytes in the chapter
(including the 2-byte key), vl, etc. is the (byte) offset from the
start of the chapter to the beginning of the verse. The first data
byte in a chapter has an offset of 2. The last entry is the
number of verses actually used. Unused verses still need to be

- 3 -

given an offset (usually 0).
4) Inside the program. before putchp(} is called the :first time, for

each chapter used, the internal chapter array needs to be ini­
tialized:

chapter[key] = chpA;

where chpA is the name of the corresponding array for chapter
key. (The ,chapter array is declared in <chap.h>, and is other­
wise unused in the user program).

5) Call putchp{lcey). It returns a pointer to a space large enough
to hold data for a chapter of type key.

6) Fill the buffer space by assigning and incrementing the pointer.
See the C ·manual for the "++" operator and pointer usage. If
the data -is already in an array, see movechp(} below.

?) Repeat 5) and 6) until done. The routines will take care of out­
put names and whether the output medium is :fllled. No book­
k~eping needs to be done in the program..

8) When done,, call putchp{C....EOT).

To read a tape in chapter /verse format:
1) Include <chap.h> •
2) Call getchp(). It returns the key number of the next chapter.
3) Call getvrs(N). It returns a pointer to verse N.
4) A key of C..EOT(103) means end of input.

When running programs using chapter /verse format, when a name is
required, it prompts on the terminal for input or output file. If a tape is
being used, enter the unit number. If a disk file is being used, enter the
·name of the file. Disk file names cannot begin with numbers. They can
contain numbers, but the first character must be alphabetic.

When the end of an input file is reached, it asks for the next input.
Thus it is easy to add files or tapes together. When the last input is
reached, enter "-1 u 'for input and the program will quit. When the end of
an output tape is reached (disk files should never have this problem) it
prompts for the next output tape, so both input and output can be con­
tinued over many different tapes and files.

3. Chapter Routines
The routines will someday be installed in the default library, so they

will be automatically included with your program For now, they are in
their own library and are included by" -!chap" when compiling.
Predefined Values

C..EOF and C..EOP are defined as 103 and 206 respectivly, for end­
of-file and end-of-plot.

getchp()
returns the key number of the next chapter on the input file.

-4-

char •getvrs(N)
must be called after getchp(}. Returns a pointer to verse N of the
current.chapter (the one returned by the Iastgetchp(}).

char tpu.tchp {lcey)
returns a pointer to an area large enough for a chapter of type key.

cupychp{lcey)
assumes key to be the number of the last chapter read by getchp(),
and copies it to the output :file. Can be used to copy a whole :file like
this:

copychp(getchp());

movechp{key ,poi:nter)
called instead of putchp{lcey}, it allocates space for a chapter key,
and copies the data starting at pointer into it.

rewchp()
rewinds the input unit. If it's a disk fl.le, it seeks to the beginning of
the file.

4. Multiple Units
There are also routines for handling multiple input and output

units. Generally speaking, they are the same as the above, with the
letter "m" prepended and an extra argument for the unit number. Unit
numbers ·can be O or 1. If there are two input tapes, any chapters on
both tapes that are going to be used must have the same format.
mgetchp(U)
char ~getvrs(U,N)
char •mpu.tchp {U,key)
mrewchp{U)

same as above, but Uis the input or output unit number (0 or 1).
mcopychp {Ufrom, Uto,key)

assumes the last chapter read on unit Ufrom was of type key, and
copies it onto unit Uta.

mm,ovechp(U,key,pointer)
used instead of mpu.tchp(U,key), it writes a chapter of type key on
unit Uusing the data starting at pointer.

