Per Eiectron Calibrations

SRL technical report \＃93－1

Richard Selesnick

November 1． 1993
This is a report on the results of the Proton／Electron Telescope（PET）electron calibrations and on a preliminary malysis of fight electron data．It is intended to provide a starting point for more detailed studies by summarizing the PET electron response characteristics，具ustratiog their application to daza analysis，describing various diffculties and anomalies encountered to date，and suggesting some possible furure refinements．

Memoranda by myself（10／31／91）and Dick Mewalt（1／17／91），describing the calibration procedures and expermental sebups used at the SRL β－spectrometer and at the the EG\＆O hinear electron accelerator in Santa Barbara respectively，are included in the PET user＇s documens．The two facilities were required to cover mosy of PET＂s useful energy range．They also provided a cross check because the energy ranges of each calibration，-0.3 to 3 MeV for the β－spectrometer and -1.5 to 27 MeV for the accelerator，had some overlap．Aagles of incidence of the electron bean relative to the telescope axis varied from 9° to 90° for the β－specrometer and 0° to 80° for the accelerator．All of the detectors and guards were instruraented to record pulse beights at the accelerator，while only the front three plus guard（ $P 1, P 2, P 3, A 3$ ）were instrumented at the β－spectrometer due to the lower energy range．The SRL Macsys data collection sysiem was used for both calibrations and varions characteristics of the 脱ght elecromics，such as energy thesholds and coincidence equations，were added later by software．This provides for a fainly simple re－analysis of the calibration data in case the electronic characteristics are revised．

Bock calibration and figh data from PET consist of the number of coums $N_{i k}$ recorded in each channel i of each event type k ．The PET event types（defined in the user＇s document）correspond to the rate counters：ELO，EHI，PLO，PHI，RNG，EWG，and PEN．Those of primary imerest for elecrons are ELO and EHI，with the possible inclusion of RNG and EWG for higher energies．The chanmels for each event type may correspond directly to the $A D C$ channels or so some linear combination of them．In the analysis to date I bave used a tinear combination that leads to channel numbers that are approxirnately proportional to the total electron energy，as described below．The data are recorded over a certain real time interval Δ ，but the instrument hivetime t_{k} during this interval is generally shorter due to deadtime and to the event buffering scheme，and nayy vary with event type k ． For fight data

$$
\begin{equation*}
\tau_{k}=\frac{N_{k}^{P H A}}{N_{k}^{R A T Z}} \frac{p L V E}{734.15}(6 \mathrm{~s}) \tag{1}
\end{equation*}
$$

where PLIVE is the total mumber recorded by the hiverime rate courter daring A（which should be a muikiple of the 65 rate accumbation period），$N_{k}^{P H A}$ is the rotal monber of puise height analyzed evencs sausfying eveat type k ，and $N_{k}^{\text {Rafe }}$ is the mumber of counts from the type k rate connter．Note thay the fraction of maiyzed evens，$N_{k}^{P H A} N_{1} R A T E$ ，showd always be less than or equal to 1 ，but for rare cases in the flight data it is actually greater than 1．This is not currently understood and I have chosea so ser te equal to 1 in these cases．In the calibrations all events were reconded and the livetime is also recorded directly by Macsys．

The relationship between $N_{i k}$ and the elecron intenisity，j ，defines the response functions $R_{i k}$ ：

$$
\begin{equation*}
N_{i k}=\pi_{k} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} R_{i k}(E, \theta) j\left(E, \alpha\left(\theta_{0} \phi\right)\right) d E \sin \theta d \theta d \phi \tag{2}
\end{equation*}
$$

where θ and 1 are spherical angles relative to the telescope axis. For filght data $/$ may depend on the electron pitch-angle α relative to the magnetic field as well as the incident kinetic energy E. In these cases α must be related to θ and ϕ, as in eq. (2), by

$$
\begin{equation*}
\sin ^{2} \alpha=\sin ^{2} \theta\left[\sin ^{2} \phi+\left(\cos \phi \cos \theta_{B}-\cos \theta \sin \theta_{B}\right)^{2}\right] \tag{3}
\end{equation*}
$$

where θ_{B} is the angle between the magnetic fied and the telescope axis. However, the analysis is greatly simplified for an isotropic distribution $(J$ depends only on E) and I assume this for the analysis of flight data. For calloration data j depeads directly on E, θ and ϕ :

$$
\begin{equation*}
j=J_{n} \delta\left(E-E_{n}\right) \frac{\delta\left(\theta-\theta_{n}\right)}{\sin \theta} \delta\left(\phi-\phi_{n}\right) \tag{4}
\end{equation*}
$$

where J_{n} is the beam fux density (electrons/cma ${ }^{2}$-s) and the subscripr n refers to beam parameters for the nth calibration rur The sine is required so that $\int j d \Omega=f_{n}$. Since we assume that $R_{i k}$ is indegendent of ϕ, the beam azimuthal direction ϕ_{n} is not significant.

Different methods were required to determine J_{n} for the β-spectrometer and accelerator dwe to the different setups. At the B-spectrometer a single $4.5 \mathrm{~cm}^{2}$ detector was piaced iw the beam to measure J_{n} directly for each E_{n}. The detector was also moved horizonally a a ansed E_{n} to determine the spatial uniformity of the beam and the best location for Per. A contour map and 3 -d representation of the measured beam profile are shown in Figure 1. Details of the method for decermining the map are given in SRL inremal report 1100 . Shoce position measurements of individual electrons were not made it is nor possible to correct for the non-unitornity of the bears, which therefore introduces small systematic errors into the results. The values of $J_{n 2}$ measured with the 4.5 cm^{2} detector centered at the location shown in Figure I were used, providing an average bearn fux over this area. It would perhaps have been somewhat more accumate to use the beam map to find the average flux over the $8 \mathrm{~cm}^{2}$ area of the $P 1$ detector. At the accelerator position measurements were made by the multi-wite proportional connter (MWPC). This tarned out to be essential because the bean was highly non-uniform at high energies. For data analysis the MWPC area was divided into a grid and the mumber of events from each grid square were then separazely normalized by the fux through that square. A 20×20 grid was found to provide accurate resuits. Details of this method ame givea in SRL internal report $\$ 79$.

The calibration analysis consists of determining $R_{i k}(\mathcal{E}, \theta)$ given $N_{i k}$ and j, white the highat data analysis consists of determining $j(E)$ given $N_{i k}$ and $R_{i k}$. Since $R_{i k}$ and j are both inside the integral in eq. (2), simiar methods can be ased. (Alternatively, the calibration and flight data could be used to simuthanousiy deremine $R_{i j}$ and j fron eq. (2). However, with j fom 0 . (4) the knograls in eq. (2) can be doae easily and

$$
\begin{equation*}
R_{i k}\left(E_{n}, \theta_{n}\right)=\frac{N_{i k}}{\tau_{k} J_{n}} \tag{5}
\end{equation*}
$$

The results of this cutculation are shown in Figure 2 for PI singles events (i.e., a PI trigger is the only requirememe. There ate 112 rums from the β-spectrometer and 143 runs from the accelerator included at yarious angles and energies. These data are summed over all channels. k, so that they are appropriate to the $P 1$ counting rate. While the 1 -spectromerer results appear faunty regular, there is some scatter in the accelerator data that is not accomuted for by the stanstical error bars. In addition there is a discrepancy between the two calibrations in the region of energy overiap. This is probably a results of some divergence in the electon bearn due to scattering in the bean pipe exit window and in the intervening material between it and PET (inchuding some air, a helium bag, and the MWPC). By
estimating the mean scattering angle and modifying eq. (4) accordingly (e.g by replacing the directional δ-functions with Gaussians), the scattering could be taken inuo account, but currenty I have not attempted this. Instead, I have renormalized the accelerator data by multiplying each point by the ratio of the β-spectrometer and accelerator results at 0° (actually the β-spectrometer data were only availabie at 9° so these were divided by $\cos \theta=0.988$). At energies above those available from the β spectrometer the accelerator data were multiplied by the ratio of $8 \mathrm{~cm}^{2}$, the actual area of PL, and the accelerator results at 0°. There is therefore a set of correction facrors, each of which applies to all of the runs at differens angles for a given accelerator bean energy. These correcrions factors vary from 0.84 to 1.21. The results are shown in Figure 3. The same set of correction factors (i.e., those derived from the PI singles events) were applied to all event types and the results are shown for ELO and EXI in Figures 4 and 5 respectively, again summed over all channels.

The resuits in Figures 3, 4, and 5 still are clearly effected by some remaining systematic errors as well as statistical emors. In addition, they are only available at the bean energies and angles. it is therefore useful to do some smoothing and interpolation. There are many possible ways to do this, all of which are difficult to justify because they involve some more or less arbitrary assumptions. However, we have to choose one because the integrals in eq. (1) require $R_{i k}$ to be known for all E and 6. For simplicity, I have chosea to use the same technique I use later on to calculare $;$. I have found this rechnique to be useful in minimizing the number of assumptions required and in specifying precisely those that are made. It is a matrix inverse technique that is described in detail by Tarantola and V aletre (Reviews of Geophysics and Space Physics, 20, 219-232, 1982). Essentially it provides a least squares solution of eqs. (2) and (4) for $R_{i k}$. The resulting smoothed respouse function is

$$
\begin{equation*}
\hat{R}(x)=\sum_{m, n} C_{0}\left(x, x_{m}\right)\left(S^{-1}\right)_{m a} R\left(x_{n}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{m n}=\sigma_{m}^{2} \delta_{m m}+C_{0}\left(x_{m}, x_{n}\right) \tag{7}
\end{equation*}
$$

Here the notation is simplified by dropping the subscripts on R and replacing the pais of variables (InE, θ) by n (E was replaced by its logarithm to give more equal spacing of the data points). $R\left(x_{n}\right)$ is the value obtatned from eq. (5) with a standard deviation of σ_{n}, and S is a $N \times N$ matrix given by eq. (7) with N equal to the mumber of data points (calibration russ). All of the smoothing information is contained in the function $C_{0}\left(x, x^{\prime}\right)$, which is the expected (prior) covariance between the points x and x^{\prime}. I have used a Gaussian

$$
C_{0}\left(x, x^{\prime}\right)=\sigma^{2} \exp \left[\frac{\left(\alpha a E-\ln E^{\prime}\right)^{2}}{2 \Delta_{E}^{2}}-\frac{(\theta-\theta)^{2}}{2 \Delta_{\theta}^{2}}\right]
$$

where $\alpha=10 \mathrm{~cm}^{2}, \Delta_{E}=0.4(E$ in MeV$)$, and $\Delta_{0}=15^{\circ}$ are constants determined by the expected magnitude of $R(\sigma)$, and the expected smoothess of R in $E\left(\Delta_{E}\right)$ and $\theta\left(\Delta_{Q}\right)$. Using ea (σ) \hat{R} cot be evaluated at axy E and θ along with its standard deviation givea by $\hat{C}^{1 / 2}(x, x)$, where $\hat{C}\left(x, x^{\prime}\right)$ is the final covariance finction (as constraned by the data)

$$
\begin{equation*}
\hat{C}(x, x)=C_{0}\left(x, x^{n}\right)-\sum_{m, n} C_{0}\left(x, x_{m}\right)\left(S^{-1}\right)_{m n} C_{0}\left(x_{n}, x^{n}\right) \tag{9}
\end{equation*}
$$

Although eq. (6) condd be used drectly I found it more useful to frost replace $R\left(x_{n}\right)$ by its logarithm in order to eliminate the possibility of negative values of R (the square root of R would be another way to do chis). Results in a similar format to Figures 3, 4, and 5 are shown in Figures 6, 7, and 8. Figure 9 shows the same results integrated over solid-angle to give the geometry factors at each energy for an isoropic distribution. The integration was done by the trapezoidal rule. Tables of the response functions and geometry factors are available for input to data analysis prograns. The tables
for P1, ELO, and ERI are shown in Figure 10. Similar tables contain the statistical nucertainties for each response function from eq. (9), but these should be used with caution because systematic errors are not included.

To calculate exergy spectra, new event-type channels wexe defined as follows. First the energy deposit in each detector as measured by Macsys was converted to the corresponding PET ADC chanel mumber using the equations defined in SRL internad report \#105 (also in the PET user's document), Only events with energies above the required ADC thresholds were included. The ADC channels for zero energy (given by the integer ravio $-\mathrm{B} / \mathrm{A}$ of the linear chanel-to-energy parameters defined in internal repor \#105) where then subtracted and the resulang rumbers summed according to $\mathrm{P} 1+\mathrm{P} 2$ for ELO evens, $\mathrm{PI}+\mathrm{P} 2+2 \cdot \mathrm{P} 3$ for EHI events, and $\mathrm{P} 1+\mathrm{P} 2+2(\mathrm{P} 3+\mathrm{P} 47$) for range events. Since the P3 and P47 ADC channels are approximately wice as wide as P1 and P2, the resulting new ctannel mumbers are approximately proportional to total energy ($-0.15 \mathrm{MeV} / \mathrm{chan}$ el). To improve statistics, some of these channels were combined to form wider energy intervals. Events that fell into each interval were collected to form response functions that were again calculated with eq. (6). The results are stored as tables in slles with the same format as Figure 10. The imegrated geomery facrors for the useful channels (those with a subseantial electron response) are shown in Figures 11, 12, and 13. Respoase functions for RNG aud EWG events have not been caiculated in detail because the statistics available from the calibrations at high energies ane probably insufficient. In these cases it may be possible to supplement the callbration data with Monte Canlo simulations such as those done by Mark. Looper with the EGS program.

The response functions from the callbration data can be used in eq. (2) to calculate $J(E)$ from fight electron data. However, there ane several problems in organizing the fight data that must be overcome firs:

1. Proton contamination must be eliminated. Ahthough protons are supposed to be eliminated by the pla discriminator, they can contaminak the electron data by chance coincidences, sdge effects. etc. I found that this is minimized by excluding data inside $L=3$ and by making additional cuts on the puise heights. The cuts I have used are $\mathrm{Pl}+\mathrm{P} 2<50$ for ELO event and $\mathrm{P} 2+\mathrm{P} 3<100$ for EHI events. These criteria conid be improved, but they are not critical in low cowating rate periods.
2. Pieup and chace coincidences. These are significant in high councing rate periods ($>$ a few thousand s^{-1}). So far I nave only looked at data with low counting rates.
3. Averaging period. The livetime equation (4) depends on having a significam number of events and rate couns in the time inmerval. If one or both are small then thexe can be large errors in the calculated livetime. It is natural to use the six second interval associated with the rate reacout and then add up all those in the period or region of interest. However, if the counting rates are small it may be better to use a longer interval. Thas is hather complicatsd by the SAMPEX orbit that moves rapidly through different spatial regions where the spectra may differ, and also by possible cime variations during any averaging period. The choice of straxegy can also depend on the PET command state, which was recemtiy changed to accept all evens in the ELO counter that trigger P1 only (ie. P2 and P3 art not considered). Coincidence equations can still be implemented by software, but there will be few of these events compared with the total that trigger p ?
4. 13 and 447 anomalies. These tave been described elsewhere.

Once the event dax have been selected they are collected into the channels for which corresponding response functions are available, usiug the method described above for the callbration data. For each averaging interval they are divided by the livetime using eq. (1). As a first example, I have chosen to select events from the L shell range 6 to. 7 and used an averaging interval of 6 s . The resuling dara from all such intervals during one day are then summed and divided by the number of intervals in the sum to give average, livetime corrected counting rates for each channel. The entire 6 s interval must be within the L shell range to be included in the surn. These final averages can then be compared with the rates predicted by dividing eq. (2) by τ_{k}, given a sample specrum $/(E)$.

The simplest way to find $j(E)$ is to parameterize it and fit the predictions of eq. (2) to the data I have done this using a power law in energy, $f(E)=A E^{-Y}$, and an exponential in energy, $j(E)=A e^{-E / E_{0}}$. 1 chose two data sets as described above, one from 1992 day 190 when PET was in its oniginal command state, and one from 1993 day 271 which was after the command state was changed to accept P1 events. In the 1992 data P1 events are not available, but the P1 rate can be used as a single data point to consradn the low energy part of the spectrum. This day was also chosen as a ture when the P3 and P47 ADCs appeared to be working, although I am not using the P47 data since they only combute to RNG events. The 1993 data does include P cyens at the expense of much lower statistics on the ELO events (for the original definition of ELO. The EHI event statistics are also lower but twe EHI rate is affected less because P3 is still required to trigger an EHI rate coum, although 12 and the guards are not. The original ELO and EHI logic equations are reinstated by software so that the original response functions can also be used.

The data from 1992 day 190 were best fit usiag an exponential specrum with $A=1800\left(\mathrm{~cm}^{2} \mathrm{~s} \text { sr MeV }\right)^{-1}$ and $E_{0}=0.40 \mathrm{MeV}$. The parameters are from an unweighted non-linear least-squares fit to the logarithm of the counting rate in each channel. Fitting the logaritim is equivalent to giving the data point equal relative uncertainties. The statistical errors were not used because systernatic errors in the response functions are probably tmore important. Data from the ELO and EHI chanmels used in the fit, along winh the simulation due to the exponential spectrum, are shown in Figure 14. The average Pl counting rate of $2400 \mathrm{~s}^{-1}$ was also included and the fit predicted 2438 s^{-1} 。

A power law fir to the Pl evem data from 1993 day 271 is shown in Figure 15. ELO and EHI data were not included in this fit because of poor stanstics, but the predictions of the power law model are shown in the figure. Also, the PS ADC was probably malfunctioning at this time, which would invalidate the EHI data. The best fit parameters were $A=19\left(\mathrm{~cm}^{2} \mathrm{~s} \mathrm{sr} \mathrm{MeV}\right)^{-1}$ and $\gamma=5.2$ These apply to the limited energy range of P1.

The electron specturn $j(E)$ can also be fouxd by directly solving eq. (2). This can be done by treating $)$ as a continuous function of E as was done for R in eq. (0 . However, 4 is simpler to assume that $;$ is defined at only a discrete set of energies so that eq (2) becomes a mamix equation

$$
\begin{equation*}
d=\mathbb{R} j \tag{10}
\end{equation*}
$$

where d is a vector containing ine connting rates $\left(N_{i k} / h_{k}\right)$ for each channel, \mathbb{R} is a matrix containing the response functions for each channel evaluated at the spectal energies, and j is the vector forming the discrate spectuma. Wita notation similar to eq. (6) a solution is

$$
\begin{equation*}
\hat{j}=j_{0}+\mathbf{C} \cdot \mathbf{R}^{T} \cdot \mathrm{C}_{d}^{-\frac{1}{2}} \cdot\left(d-\mathrm{R} j_{0}\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{C}=\left(\mathbb{R}^{T} \cdot C_{d}^{-1} \cdot \mathbb{R}+C_{0}^{-1}\right)^{-1} \tag{12}
\end{equation*}
$$

is the covariance matrix, of the solution, C_{d} is the covariance matrix of the data, which is diagonal since the errors in the data are ancorrelated, aud C_{9} is the prior covariance matrix. The vector j_{0} is an initial guess at the spectrum and C_{0} reptesents the degree of confidence in this guess, It is still useful to include some smoothimg. since fiuctuanons in the data tend to be amplified by the matrix inverse, so 1 have again used a Gaussian in energy similar to eq. (8). I found that the best power law at to the data was a good choice for $/ 0$. The spectrum resulting from the 1992 day 190 data is shown in Figure 16, along with fo_{0} for comparison. The EHI data were not included in the Gi. To compensate for systematic effects the error bars on the data, which go into C_{d}, were assumed to be 10% instead of the statistical errors. The error bars on \hat{j} result from eq. (12) and in regions where they are small the data is constraining the model. Note that the Pi rate provides a constraint near its threshold energy of $-0.5-0.6 \mathrm{MeV}$, but then there is a gap unxil the ELO event data become important from -1.5 to -3.5

MeV . The fit to the DLO data resulxing from the model spectrum in Figure 16 is shown in Figure 17. The P1 rate predicted by the model was $2388 \mathrm{~s}^{-1}$, compared to $2400 \mathrm{~s}^{-1}$ from the data.

Some aspects of the data analysis that should be improved or further considered are: the effects of pilieup and chance coincidences in high counting rate regions; the palidity of the deadtime corrections and averaging periods: the importance of anisotropic electron diswibutions for which the fill angular response functions and spacecraft poiming information would need to be incorporazed; and the error analysis of the response functions, event data, and energy specra.

Figure Captions

1. Beam pronile and conour map from the β spectrometer calibration. The location of PET is shown by the X . The contours are spaced every $0.5\left(\mathrm{~cm}^{2} \mathrm{~s}\right)^{-1}$ and range from 0.5 to $6.0\left(\mathrm{~cm}^{2} \mathrm{~s}\right)^{-1}$. Note that the bearn was nor fully mapped around the edges.
2. Response function (effective area) for P1 singles events from eq. (5). The $\overline{\text { B }}$-spectrometer data ane on the left and the accelerator data on the right. The points for each angle are comected. Satistical error bars are included.
3. Similar to Figure 2 but corrected for accelerator bean divergence. The β-spectrometer data are unchanged.
4. Similar to Figure 3 but for ELO events.
5. Similar to Figure 3 but for EHI events.
6. Smoothed P1 singles response function from eq. (6). The points are at approximately twice the energy resolution of the calibration nus and every 10° in θ.
7. Similar to Figure 6 but for ELO events.
8. Similar to Figure 6 but for Ehr evencs.
9. P1, ELO, mad Ent geomery factors versus energy for isorropic electron distributions.
10. Tables of the Pl (a), ELO (b), and EHY (c) response functions. The first colum on the left colum is the energy in MeV, the second column is the geonery factor shown in fgure 9, the remaining columns are the response function values shown in Figure 7 with the angle in degrees at the top.
11. Pl geomery factors versus energy for the individual channels described in the fext. When two or more channels are summed to form a single response function the following convention is used for the labels on each plot and for the file names containing the response functions: the channel numbers before the decimal point refer to the lowest channel included, the number after the decimal point is the number of chanels included in the sum. For example, 006,2 includes chanels 6 and 7.
12. (a), (b) Similar to Figure 11 bui for ELO.
13. Similar to Figure 11 bur for EHI
14. ELO and EFI event data from 1992 day 190 (bistograns), and the model simulanion based on the exponeatial fit described in the text (data points with error bars based on the chubration statistics). The e-folding energy is $E_{0}=0.40 \mathrm{MeV}$.
15. P1 event data winh a power-law fit from 1993 day 271, in a similar format to Figure 14. ELO and EHI data were not inchuded in the fit. The specral index is $\gamma=5.2$.
16. Elecron energy spectra for 1992 day 190 derived from a power-law fat (dashed line, $\gamma=3$) and eq.
(11) (histogram with error bars), as described in the text
17. Simulated ELO data from the spectum in Figure 16 , in the same format as Figure 14. The Pl counting rate was included in the fit but not the EHI data.

07/27/2006 THU 08:02 FAX 310336 1636 AEROSPACE

[^0]

07/27/2006 THU 08:04 FAX 3103361636 AEROSPACE
"puex r

$07 / 27 / 2006$ THU $08: 04$ FAX 3103361636 AEROSPACE

(zuo) 0010 aAnoayz

$07 / 27 / 2006$ THU $08: 05$ FAX 3103361636 AEROSPACE

07/27/2006 THU 08:05 FAX 3103361636 AER0SPACE

/home/skrymir2/sampex/rss/pecear/smaspl. alc						Wect oct 13 09:43:24 1993				1	
		0.000	10.000	20.000	30.000	40.000	50.000	60.000	70.000	80.000	90.000
0.350	0.006	0.001	0.003	0.002	0.001	0.001	0.001	0.003	0.000	0.000	0.000
0.410	0.004	0.001	0.002	0.002	0.001	0.001	0.001	0.001	0.000	0.000	0.000
0.470	0.004	0.001	0.002	0.002	0.001	0.000	0.001	0.001	0.000	0.000	0.000
0.520	0.003	0.000	0.001	0.002	0.001	0.000	0.000	0.001	0.000	0.000	0.000
0.570	0.003	0.000	0.001	0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.000
0.630	0.002	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000
0.690	0.002	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.740	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
0.800	0.003	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000
0.850	0.004	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000
0.910	0.005	0.001	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.000
0.960	0.008	0.002	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.001	0.000
1.100	0.025	0.024	0.007	0.006	0.004	0.005	0.005	0.004	0.003	0.003	0.001
1.300	0.136	0.173	0.087	0.064	0.042	0.036	0.021	0.011	0.008	0.009	0.004
1.500	0.408	0.3 A 3	0.267	0.228	0.156	0.115	0.058	0.024	0.011	0.016	0.009
1.750	0.805	0.497	0.481	0.483	0.315	0.238	0.139	0.045	0.013	0.023	0.017
2.000	1.160	0.698	0.685	0.626	0.445	0.345	0.221	0.067	0.015	0.028	0.022
2.250	1.415	0.861	0.830	0.765	0.554	0.425	0.260	0.084	0.020	0.032	0.023
2.500	1.513	0.884	0.856	0.808	0.607	0.462	0.258	0.096	0.029	0.036	0.020
2.750	1. 490	0.811	0.808	0.769	0.591	0.461	0.243	0.108	0.041	0.038	0.014
3.000	1.422	0.724	0.746	0.702	0.538	0.438	0.232	0.122	0.057	0.036	0.009
3.250	1.354	0.656	0.691	0.639	0.480	0.403	0.226	0.137	0.072	0.032	0.006
3.500	1.290	0.602	0.640	0.587	0.431	0.381	0.222	0.148	0.083	0.027	0.004
3.750	1.223	0.553	0.584	0.541	0.392	0.353	0.217	0.153	0.088	0.023	0.003
4.000	1.144	0.504	0.524	0.498	0.362	0.325	0.207	0.152	0.088	0.019	0.002
4.400	1.003	0.428	0.430	0.428	0.321	0.281	0.182	0.138	0.083	0.015	0.001
4.800	0.865	0.362	0.354	0.363	0.286	0.242	0.154	0.118	0.075	0.014	0.001
5.300	0.724	0.300	0.289	0.292	0.246	0.203	0.124	0.097	0.068	0.013	0.001
5.800	0.622	0.256	0.247	0.235	0.209	0.176	0.104	0.082	0.064	0.015	0.001
6.800	0.493	0.194	0.190	0.155	0.145	0.137	0.086	0.069	0.062	0.019	0.001
7.800	0.419	0.155	0.152	0.114	0.104	0.107	0.078	0.065	0.061	0.022	0.001
8.800	0.379	0.135	0.132	0.101	0.086	0.086	0.073	0.064	0.059	0.023	0.002
9.800	0.357	0.121	0.122	0.100	0.082	0.075	0.069	0.062	0.055	0.022	0.001
11.300	0.322	0.093	0.101	0.092	0.080	0.067	0.063	0.056	0.049	0.019	0.001
12.800	0.262	0.062	0.069	0.064	0.065	0.056	0.051	0.045	0.043	0.017	0.001
13.300	0.239	0.053	0.059	0.054	0.058	0.052	0.046	0.041	0.042	0.017	0.001
15.800	0.152	0.030	0.032	0.025	0.029	0.030	0.026	0.025	0.036	0.016	0.001
17.800	0.125	0.026	0.028	0.020	0.021	0.021	0.017	0.019	0.035	0.017	0.001
19.800	0.125	0.026	0.031	0.022	0.021	0.018	0.014	0.018	0.037	0.017	0.001
24.000	0.154	0.020	0.033	0.039	0.035	0.025	0.019	0.026	0.047	0.015	0.001
-1.000	..1.	0.011	0.024	0.041	0.043	0.033	0.025	0.034	0.048	0.012	0.001

		0.000	10.000	20.000	30.000	40.000	50.000	60.000	70.000	80.000	90.000
0.350	0.009	0.003	0.004	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.000
0.410	0.005	0.003	0.003	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000
0.470	0.003	0.002	0.002	0.001	0.000	0,000	0.001	0.001	0.001	0.000	0.000
0.520	0.002	0.002	0.001	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000
0.570	0.002	0.001	0.001	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.630	0.002	0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.690	0.003	0.002	0.002	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000
0.740	0,003	0.002	0,002	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000
0.800	0.004	0.003	0.003	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000
0.850	0.004	0.003	0.004	0.002	0.001	0.001	0.001	0.001	0.000	0.000	0.000
0.910	0.004	0.002	0.003	0.002	0.001	0.001	0.001	0.000	0.000	0.000	0.000
0.960	0,003	0.002	0.002	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000
1.100	0.001	0.000	0.001	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.300	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.500	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.750	0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2,000	0.009	0.007	0.004	0.004	0.004	0.002	0.001	0.001	0.001	0.000	0.000
2.250	0.049	0.054	0.039	0.031	0.023	0.012	0.004	0.003	0.002	0.001	0.000
2,500	0.178	0.201	0.160	0.123	0.080	0.047	0.017	0.007	0.003	0.001	0.000
2.750	0.414	0.416	0.356	0.290	0.179	0.117	0.047	0.014	0.004	0.001	0.000
3.000	0.701	0.606	0.548	0.484	0.296	0.205	0.094	0.024	0.005	0.001	0.000
3.250	0.974	0.746	0.701	0.660	0.410	0.287	0.147	0.036	0.006	0.001	0.000
3.500	1.197	0.857	0.825	0.796	0.508	0.350	0.192	0.049	0.008	0.001	0.000
3.750	1. 364	0.960	0.937	0.891	0.587	0.392	0.219	0.060	0.010	0.001	0.000
4.000	1.481	1.057	1.044	0.953	0.648	0.418	0.229	0.069	0.014	0.002	0.000
4.400	1.591	1.248	1.207	1.009	0.717	0.434	0.218	0.079	0.021	0.003	0.000
4.800	1. 639	1.429	1.352	1.043	0.755	0.429	0.191	0.081	0.030	0.005	0.000
5.300	1. 643	1.636	1.502	1.079	0.750	0.398	0.154	0.076	0.042	0.009	0.001
5.800	1.612	1.816	1.621	1.116	0.724	0.354	0.125	0.069	0.051	0.014	0.001
5.800	1.522	2.119	1.786	1.157	0.599	0.279	0.101	0.059	0.057	0.021	0.001
7.800	1.427	2.239	2.797	4.103	0.490	0.249	0.109	0.059	0.054	0.023	0.002
8.800	1.311	2.012	1.616	0.964	0.413	0.244	0.134	0.063	0.047	0.020	0.001
9.800	1.164	1.565	1.340	0.797	0.350	0.234	0.154	0.065	0.041	0.017	0.001
1. 300	0.901	0.991	0.971	0.569	0.261	0.188	0.147	0.058	0.032	0.014	0.001
2.800	0.637	0.690	0.698	0.382	0.175	0.126	0.109	0.047	0.026	0.011	0.001
. 3.300	0.559	0.630	0.620	0.328	0.152	0.107	0.096	0.043	0.025	0.011	0.001
5.800	0.292	0.440	0.321	0.149	0.069	0.048	0.052	0.031	0.020	0.009	0.001
7.800	0.198	0.334	0.196	0.093	0.044	0.029	0.037	0.027	0.017	0.007	0.001
9.800	0.162	0.262	0.146	0.076	0.036	0.022	0.030	0.025	0.014	0.005	0.001
4.000	0.159	0.212	0.141	0.084	0.041	0.025	0.032	0.023	0.009	0.003	0.000
6.700	0.154	0.205	0.138	0.072	0.041	0.030	0.035	0.020	0,006	0.002	0.000

$$
\text { tigune } 1 \text { 'L } a \text {) }
$$

$07 / 27 / 2006$ THU $08: 10$ FAX $310 \quad 336 \quad 1636$ AEROSPACE
E10 wic $1 /$

Figure 15

$j\left(\mathrm{~cm}^{2} \sin \mathrm{MeV}^{2}\right)^{-1}$

$$
\text { Figunc } 12\binom{0}{0}
$$

[^0]: 20／010荡

